Straight Lines

EXERCISES

ELEMENTARY

Q. 1 (1)

The vertices of triangle are the intersection points of these given lines. The vertices of Δ are $\mathrm{A}(0,4)$, $\mathrm{B}(1,2), \mathrm{C}(4,0)$
Now, $\quad \mathrm{AB}=\sqrt{(0-1)^{2}+(4-1)^{2}}=\sqrt{10}$
$\mathrm{BC}=\sqrt{(1-4)^{2}+(0-1)^{2}}=\sqrt{10}$
$\mathrm{AC}=\sqrt{(0-4)^{2}+(0-4)}=4 \sqrt{2}$
$\because \mathrm{AB}=\mathrm{BC} ; \therefore \Delta$ is isosceles.
Q. 2
(2) Mid point $\equiv\left(\frac{1+1}{2}, \frac{3-7}{2}\right)=(1,-2)$

Therefore required line is $2 x-3 y=k \Rightarrow 2 x-3 y=8$.
Q. 3 (1) Point of intersection $y=-\frac{21}{5}$ and $x=\frac{23}{5}$
$\therefore 3 x+4 y=\frac{3(23)+4(-21)}{5}=\frac{69-84}{5}=-3$.
Hence, required line is $3 x+4 y+3=0$.
Q. 4 (1)
$(\mathrm{h}-3)^{2}+(\mathrm{k}+2)^{2}=\left|\frac{5 \mathrm{~h}-12 \mathrm{k}-13}{\sqrt{25+144}}\right|$.
Replace (h, k) by (x, y), we get
$13 x^{2}+13 y^{2}-83 x+64 y+182=0$, which is the required equation of the locus of the point.
Q. 5 (2)

Let point be $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$, then according to the condition
$\frac{3 \mathrm{x}_{1}+4 \mathrm{y}_{1}-11}{5}=-\left(\frac{12 \mathrm{x}_{1}+5 \mathrm{y}_{1}+2}{13}\right)$
Since the given lines are on opposite sides with respect to origin, hence the required locus is $99 x+77 y-133=0$
Q. 6 (1) Let the point be (x, y). Area of triangle with points $(\mathrm{x}, \mathrm{y}),(1,5)$ and $(3,-7)$ is 21 sq. units
$\therefore \frac{1}{2}\left|\begin{array}{ccc}\mathrm{x} & \mathrm{y} & 1 \\ 1 & 5 & 1 \\ 3 & -7 & 1\end{array}\right|=21$
Solving; locus of point (x, y) is $6 x+y-32=0$.
Q. 7 (3) Here $\mathrm{c}=-1$ and $\mathrm{m}=\tan \theta=\tan 45^{\circ}=1$
(Since the line is equally inclined to the axes, so $\theta=45^{\circ}$)
Hence equation of straight line is $y= \pm(1 . x)-1$
$\Rightarrow \mathrm{x}-\mathrm{y}-1=0$ and $\mathrm{x}+\mathrm{y}+1=0$.
Q. 8 (2)

A line perpendicular to the line $5 x-y=1$ is given by $x+5 y-\lambda=0=L,($ given $)$

In intercept form $\frac{x}{\lambda}+\frac{y}{\lambda / 5}=1$
So, area of triangle is $\frac{1}{2} \times$ (Multiplication of intercepts)
$\Rightarrow \frac{1}{2}(\lambda) \times\left(\frac{\lambda}{5}\right)=5 \Rightarrow \lambda= \pm 5 \sqrt{2}$
Hence the equation of required straight line is $x+5 y= \pm 5 \sqrt{2}$.
Q. 9 (2)

Let the required equation is $y=-x+c$ which is perpendicular to $\mathrm{y}=\mathrm{x}$ and passes through (3,2). So $2=-3+c \Rightarrow c=5$. Hence required equation is $x+y=5$
Q. 10 (1)The equation of any straight line passing through $(3,-2)$ is $\mathrm{y}+2=\mathrm{m}(\mathrm{x}-3)$

The slope of the given line is $-\sqrt{3}$.
So, $\tan 60^{\circ}= \pm \frac{m-(-\sqrt{3})}{1+m(-\sqrt{3})}$
On solving, we get $\mathrm{m}=0$ or $\sqrt{3}$
Putting the values of m in (i), the required equation of lines are $y+2=0$ and $\sqrt{3} x-y=2+3 \sqrt{3}$.
Q. 11 (1)

Let the intercept be a and 2 a , then the equation of line is $\frac{x}{a}+\frac{y}{2 a}=1$, but it also passes through (1,2), therefore $\mathrm{a}=2$.
Hence the required equation is $2 x+y=4$.
Q. 12 (1)

Slope $=-\sqrt{3}$
\therefore Line is $y=-\sqrt{3} x+c \Rightarrow \sqrt{3} x+y=c$

Now $\frac{c}{2}=|4| \Rightarrow c= \pm 8 \Rightarrow x \sqrt{3}+y= \pm 8$

Q. 13 (1)

The point of intersection of $5 x-6 y-1=0$ and $3 \mathrm{x}+2 \mathrm{y}+5=0$ is $(-1,-1)$. Now the line perpendicular to $3 x-5 y+11=0$ is $5 x+3 y+k=0$, but it passes through $(-1,-1) \Rightarrow$ $-5-3+\mathrm{k}=0 \Rightarrow \mathrm{k}=8$

Hence required line is $5 x+3 y+8=0$.
Q. 14 (4) The equation of a line passing through (2,2) and perpendicular to $3 x+y=3$ is $y-2=\frac{1}{3}(x-2)$ or $x-3 y+4=0$.
Putting $\mathrm{x}=0$ in this equation, we obtain $\mathrm{y}=4 / 3$
So, y-intercept $=4 / 3$.
Q. 15 (1)

Take two perpendicular lines as the coordinate axes. If a, b be the intercepts made by the moving line on the coordinate axes, then the equation of the line is
$\frac{x}{a}+\frac{y}{b}=1$
According to the question $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}=\frac{1}{\mathrm{k}}$, (say)
i.e., $\quad \frac{\mathrm{k}}{\mathrm{a}}+\frac{\mathrm{k}}{\mathrm{b}}=1$

The result (ii) shows that the straight line (i) passes through a fixed point (k, k).
Q. 16 (4) Here equation of $A B$ is $\mathrm{x}+4 \mathrm{y}-4=0$
and equation of $B C$ is $2 \mathrm{x}+\mathrm{y}-22=0$
Thus angle between (i) and (ii) is given by $\tan ^{-1} \frac{-\frac{1}{4}+2}{1+\left(-\frac{1}{4}\right)(-2)}=\tan ^{-1} \frac{7}{6}$
Q. 17 (3) $a_{1} a_{2}+b_{1} b_{2}=\frac{1}{a b^{\prime}}+\frac{1}{a^{\prime} b}=0$

Therefore, the lines are perpendicular
Q. 18 (2)
$m_{1}=\frac{6+4}{-2-3}=\frac{10}{-5}=-2$ and $m_{2}=\frac{-18-6}{9-(-3)}=-2$
Hence the lines are parallel.
Q. 19 (4)

Here,
Slope of $\mathrm{I}^{\text {st }}$ diagonal $=\mathrm{m}_{1}=\frac{2-0}{2-0}=1 \Rightarrow \theta_{1}=45^{\circ}$
Slope of $I I^{\text {nd }}$ diagonal $=m_{2}=\frac{2-0}{1-1}=\infty \Rightarrow \theta_{2}=90^{\circ}$
$\Rightarrow \theta_{2}-\theta_{1}=45^{\circ}=\frac{\pi}{4}$
Q. 20 (1)

Let the point (h, k) then $\mathrm{h}+\mathrm{k}=4$
and $1= \pm \frac{4 \mathrm{~h}+3 \mathrm{k}-10}{\sqrt{4^{2}+3^{2}}} \Rightarrow 4 \mathrm{~h}+3 \mathrm{k}=15$
and $4 \mathrm{~h}+3 \mathrm{k}=5$
On solving (i) and (ii); and (i) and (iii), we get the required points $(3,1)$ and $(-7,11)$.
Trick : Check with options. Obviously, points $(3,1)$ and $(-7,11)$ lie on $x+y=4$ and perpendicular distance of these points from $4 x+3 y=10$ is 1
Q. 21 (1)

Required distance $=\frac{7}{\sqrt{(12)^{2}+5^{2}}}=\frac{7}{13}$
Q. 22 (3)

Let p be the length of the perpendicular from the vertex $(2,-1)$ to the base $x+y=2$
Then $\mathrm{p}=\left|\frac{2-1-2}{\sqrt{1^{2}+1^{2}}}\right|=\frac{1}{\sqrt{2}}$
If ' a ' be the length of the side of triangle, then $\mathrm{p}=\mathrm{a} \sin 60^{\circ} \Rightarrow \frac{1}{\sqrt{2}}=\frac{\mathrm{a} \sqrt{3}}{2} \Rightarrow \mathrm{a}=\sqrt{\frac{2}{3}}$
Q. 23 (1)
$\mathrm{L} \equiv 2 \mathrm{x}+3 \mathrm{y}-4=0, \mathrm{~L}_{(-6,2)}=-12+6-4<0$
$L^{\prime}=6 x+9 y+8=0 \quad L_{(-6,2)}^{\prime}=-36+18+8<0$
Hence the point is below both the lines..
Q. 24 (1)

Equation of the line passing through $(3,8)$ and perpendicular to $x+3 y-7=0$ is $3 x-y-1=0$. The intersection point of both the lines is $(1,2)$.
Now let the image of $A(3,8)$ be $A^{\prime}\left(x_{1}, y_{1}\right)$, then point $(1,2)$ will be the mid point of AA^{\prime}.
$\Rightarrow \frac{\mathrm{x}_{1}+3}{2}=1 \Rightarrow \mathrm{x}_{1}=-1$ and $\frac{\mathrm{y}_{1}+8}{2}=2 \Rightarrow \mathrm{y}_{1}=-4$.
Hence the image is $(-1,-4)$.
Q. 25 (2) Here the lines are, $3 x+4 y-9=0$ and $6 x+8 y-15=0$
Now distance from origin of both the lines are

$$
\frac{-9}{\sqrt{3^{2}+4^{2}}}=-\frac{9}{5} \text { and } \frac{-15}{\sqrt{6^{2}+8^{2}}}=-\frac{15}{10}
$$

Hence distance between both the lines are

$$
\left|-\frac{9}{5}-\left(-\frac{15}{10}\right)\right|=\frac{3}{10}
$$

Ailter: Put $y=0$ in the first equation, we get $x=3$ therefore, the point $(3,0)$ lies on it. So the required distance between these two lines is the perpendicular length of the line $6 x+8 y=15$ from the point $(3,0)$. i.e., $\frac{6 \times 3-15}{\sqrt{6^{2}+8^{2}}}=\frac{3}{10}$.

Q. 26 (3)

Here the given lines are
$a x+b y+c=0$
$b x+c y+a=0$
$c x+a y+b=0$
The lines will be concurrent, if $\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{b} & \mathrm{c} & \mathrm{a} \\ \mathrm{c} & \mathrm{a} & \mathrm{b}\end{array}\right|=0$
$\Rightarrow \mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}-3 \mathrm{abc}=0$.
Q. 27 (2)

The set of lines is $4 a x+3 b y+c=0$, where $a+b+c=0$.

Eliminating c, we get $4 \mathrm{ax}+3 \mathrm{by}-(\mathrm{a}+\mathrm{b})=0$
$\Rightarrow \mathrm{a}(4 \mathrm{x}-1)+\mathrm{b}(3 \mathrm{y}-1)=0$
This passes through the intersection of the lines
$4 x-1=0 \quad$ and $\quad 3 y-1=0$ i.e. $x=\frac{1}{4}, y=\frac{1}{3}$ i.e.,
$\left(\frac{1}{4}, \frac{1}{3}\right)$.

Q. 28 (3)

Required line should be,
$(3 x-y+2)+\lambda(5 x-2 y+7)=0$
$\Rightarrow(3+5 \lambda) x-(2 \lambda+1) y+(2+7 \lambda)=0$
$\Rightarrow \mathrm{y}=\frac{3+5 \lambda}{2 \lambda+1} \mathrm{x}+\frac{2+7 \lambda}{2 \lambda+1}$

As the equation (ii), has infinite slope, $2 \lambda+1=0$ $\Rightarrow \lambda=-1 / 2$ putting $\lambda=-1 / 2$ in equation (i) we have $(3 x-y+2)+(-1 / 2)(5 x-2 y+7)=0 \Rightarrow x=3$.
Q. 29 (1)

The equations of the bisectors of the angles between
the lines are $\frac{x-2 y+4}{\sqrt{1+4}}= \pm \frac{4 x-3 y+2}{\sqrt{16+9}}$
Taking positive sign,
then
$(4-\sqrt{5}) x-(3-2 \sqrt{5}) y-(4 \sqrt{5}-2)=0$
and negative sign gives
$(4+\sqrt{5}) x-(2 \sqrt{5}+3) y+(4 \sqrt{5}+2)=0$
Let θ be the angle between the line (i) and one of the
given line, then $\tan \theta=\left|\frac{\frac{1}{2}-\frac{4-\sqrt{5}}{3-2 \sqrt{5}}}{1+\frac{1}{2} \cdot \frac{4-\sqrt{5}}{3-2 \sqrt{5}}}\right|=\sqrt{5}+2>1$
Hence the line (i) bisects the obtuse angle between the given lines.

Q. 30 (1)

Let the coordinates of A be $(a, 0)$. Then the slope of the reflected ray is $\frac{3-0}{5-a}=\tan \theta$, (say).

The slope of the incident ray $=\frac{2-0}{1-a}=\tan (\pi-\theta)$
Since $\tan \theta+\tan (\pi-\theta)=0 \Rightarrow \frac{3}{5-a}+\frac{2}{1-a}=0$
$\Rightarrow 13-5 a=0 \Rightarrow \mathrm{a}=\frac{13}{5}$
Thus the coordinates of A are $\left(\frac{13}{5}, 0\right)$.

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1
$\mathrm{AB}=\sqrt{4+9}=\sqrt{13}$
$\mathrm{BC}=\sqrt{36+16}=2 \sqrt{13}$
$\mathrm{CD}=\sqrt{4+9}=\sqrt{13}$
$\mathrm{AD}=\sqrt{36+16}=2 \sqrt{13}$
$\mathrm{AC}=\sqrt{64+1}=\sqrt{65}$
$\mathrm{BD}=\sqrt{16+49}=\sqrt{65}$
its rectangle
Q. 2 (1)

$$
\begin{aligned}
& \frac{-5 \lambda+3}{\lambda+3}=x, \frac{6 \lambda-4}{\lambda+1}=0 \\
& \left(3, \frac{4)}{(x, 0)}(-5,6) \Rightarrow \lambda=\frac{2}{3}\right.
\end{aligned}
$$

Q. 3 (4)
since the points are collinear option D is correct
Q. 4 (2)
$\Delta=0$

$$
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{ccc}
\mathrm{k} & 2-2 \mathrm{k} & 1 \\
1-\mathrm{k} & 2 \mathrm{k} & 1 \\
-\mathrm{k}-4 & 6-2 \mathrm{k} & 1
\end{array}\right|=0 \\
& \mathrm{k}(2 \mathrm{k}-6+2 \mathrm{k})-(2-2 \mathrm{k})(1-\mathrm{k}+\mathrm{k}+4)+1(1-\mathrm{k})(6 \\
& -2 \mathrm{k})-2 \mathrm{k}(-\mathrm{k}-4)=0 \\
& 4 \mathrm{k}^{2}-6 \mathrm{k}-10+10 \mathrm{k}+6-8 \mathrm{k}+2 \mathrm{k}^{2}+2 \mathrm{k}^{2}+8 \mathrm{k}=0 \\
& 8 \mathrm{k}^{2}+4 \mathrm{k}-4=0 \Rightarrow 2 \mathrm{k}^{2}+\mathrm{k}-1=0 \\
& 2 \mathrm{k}^{2}+2 \mathrm{k}-\mathrm{k}-1=0 \\
& 2 \mathrm{k}(\mathrm{k}+1)-1(\mathrm{~K}+1)=0 \\
& \mathrm{k}=-1, \frac{1}{2}
\end{aligned}
$$

Q. 5 (4)

(2a, 3a), (3b, 2b) \& (c, c) are collinear

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
2 a & 3 a & 1 \\
3 b & 2 b & 1 \\
c & c & 1
\end{array}\right|=0 \\
& \Rightarrow(3 b c-2 b c)-(2 c a-3 c a)+(4 a b-9 a b)=0 \\
& \Rightarrow b c+c a+5 a b=0 \\
& \Rightarrow \frac{2}{2} \cdot \frac{5}{c}=\frac{1}{a}+\frac{1}{b} \Rightarrow \frac{2}{\left(\frac{2 c}{5}\right)}=\frac{1}{a}+\frac{1}{b} \\
& \Rightarrow a, \frac{2 c}{5}, b \text { are in H.P. }
\end{aligned}
$$

Q. 6 (1)

By given information
Since in $\triangle \mathrm{ABC}$, B is other centre. Hence $\angle \mathrm{B}=90^{\circ}$ Cercum centre is $\mathrm{S}(\mathrm{a}, \mathrm{b})$
$\frac{x+0}{2}=a \Rightarrow x=2 a$

$\frac{y+0}{2}=b \Rightarrow y=2 b$
Hence, $\mathrm{c}(\mathrm{x}, \mathrm{y}) \equiv(2 \mathrm{a}, 2 \mathrm{~b})$

Q. 7 (4)

If H is orthocentre of triangle ABC , then orthocentre of triangle BCH is point A
Q. 8
(1)

Area of the triangle formed by joining the mid points of the sides of the triangle $=\frac{1}{4}$ (area of the triangle)

$$
=\frac{1}{4} \times \frac{1}{2}\left|\begin{array}{ccc}
2 & 1 & 1 \\
-2 & 3 & 1 \\
4 & -3 & 1
\end{array}\right|=\frac{1}{4} \times 6=1.5 \text { sq.units }
$$

Q. $9 \quad$ (3)
Δ right angled

\Rightarrow circum centre
$=$ mid point of hypotaneous $=\left(\frac{3}{2}, 2\right)$
Q. 10 (1)
$\left\{\begin{array}{ccc}x_{1}+x_{3}=10, & y_{1}+y_{3}=0 \\ x_{2}+x_{3}=0, & y_{2}+y_{3}=24 \\ x_{1}+x_{2}=10, & y_{2}+y_{2}=-24\end{array}\right.$

$$
\begin{aligned}
& x_{1}=x_{2}=10, y_{1}-y_{2}=-24 \\
& x_{1}=10, y_{1}=0 \\
& x_{2}=0, y_{2}=24 \\
& x_{3}=0, y_{3}=0
\end{aligned}
$$

\(\left.\begin{array}{ccc}x_{1}=10

x_{2}=0

x_{3}=0 \& , \& y_{1}=0

y_{2}=24

y_{3}=0\end{array}\right\} \Rightarrow\)| $A(10,0)$ | on $x-\operatorname{axis}$ | |
| :---: | :---: | :---: |
| $B(a, 24)$ | on $y-a x i s$ | |
| $C(0,0)$ | is | origin |

$\Delta \mathrm{ABC}$ is right angled \Rightarrow orthocentre is $(0,0)$

Q. 11 (4)

$\Delta=\frac{1}{2}\left|\begin{array}{ccc}a \cos \theta & b \sin \theta & 1 \\ -a \sin \theta & b \cos \theta & 1 \\ -a \cos \theta & -b \sin \theta & 1\end{array}\right|$
$\xrightarrow{R_{1} \rightarrow R_{1}+R_{3}}\left|\begin{array}{ccc}0 & 0 & 2 \\ -a \sin \theta & b \cos \theta & 1 \\ -a \cos \theta & -b \sin \theta & 1\end{array}\right|$
$=\frac{1}{2} \cdot 2\left(a b \sin ^{2} \theta+a b \cos ^{2} \theta\right)=a b$

Q. 12 (3)

$$
\frac{1}{2}\left|\begin{array}{ccc}
\frac{3 k-5}{k+1} & \frac{5 k+1}{k+1} & 1 \\
1 & 5 & 1 \\
7 & -2 & 1
\end{array}\right|=|2|
$$

$$
\Rightarrow 1 \cdot(-2-3)-1 \cdot\left(\frac{-6 k+10}{k+1}-\frac{35 k+7}{k+1}\right)
$$

$$
+\left(\frac{15 k-25}{k+1}-\frac{5 k+1}{k+1}\right)= \pm 4
$$

$$
\Rightarrow 6 \mathrm{k}-10+35 \mathrm{k}+7+15 \mathrm{k}-25-5 \mathrm{k}-1
$$

$$
= \pm 4+37(\mathrm{k}+1)
$$

$$
\Rightarrow 51 \mathrm{k}-29=41 \mathrm{k}+41 \text { or } 51 \mathrm{k}-29
$$

$$
=33 \mathrm{k}+33
$$

$$
\Rightarrow 10 \mathrm{k}=70 \text { or } 18 \mathrm{k}=62
$$

$$
\mathrm{k}=7 \mathrm{k}=\frac{31}{9}
$$

Q. 13 (1)
$A P=\sqrt{x^{2}+(y-4)^{2}}$
$B P=\sqrt{x^{2}+(y+4)^{2}}$
$\because|A P-B P|=6$
$\mathrm{AP}-\mathrm{BP}= \pm 6$
$\sqrt{x^{2}+(y-4)^{2}}-\sqrt{x^{2}+(y+4)^{2}}= \pm 6$
On squaring we get the locus of P
$9 x^{2}-7 y^{2}+63=0$
Q. 14 (2)

Let coordinate of mid point is $m(h, k)$
$2 h=\frac{p}{\cos d} \Rightarrow \cos \alpha=\frac{p}{2 h}$
$2 k=\frac{p}{\sin d} \Rightarrow \sin \alpha=\frac{p}{2 k}$
Squareing and add.
$\frac{1}{\mathrm{~h}^{2}}+\frac{1}{\mathrm{k}^{2}}=\frac{4}{\mathrm{p}^{2}}$
Locus of $p(h, k) \Rightarrow \frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$

Q. 15 (1)
equation of line $A B$
$y-b=m(x-a)$

$\therefore G\left(\frac{a-\frac{b}{m}}{3}, \frac{b-a m}{3}\right) \Rightarrow h=\frac{a-\frac{b}{m}}{3}$,
$\mathrm{k}=\frac{\mathrm{b}-\mathrm{am}}{3}$
on eleminating ' m ' we get required locus $\mathrm{bh}+\mathrm{ak}-3 \mathrm{hk}=0 \quad \Rightarrow \mathrm{bx}+\mathrm{ay}-3 \mathrm{xy}=0$
Q. 16 (3)

Let centroid is (h, k)
then $h=\frac{\cos \alpha+\sin \alpha+1}{3} \& \mathrm{k}=$
$\frac{\sin \alpha-\cos \alpha+2}{3}$
$\cos \alpha+\sin \alpha=3 h-1 \& \sin \alpha-\cos \alpha=3 k-2$
squaring \& adding
$2=(3 \mathrm{~h}-1)^{2}+(3 \mathrm{k}-2)^{2}$ Locus of (h, k)
$\Rightarrow(3 \mathrm{x}-1)^{2}+(3 \mathrm{k}-2)^{2}=2$
$\Rightarrow 3\left(x^{2}+y^{2}\right)-2 x-4 y+1=0$
Q. 17 (2)

P is a mid point AB

$\mathrm{AB}=10$ units
$(2 \mathrm{~h})^{2}+(2 \mathrm{k})^{2}=10^{2}$
$h^{2}+k^{2}=25$
Locus of (h, k)
$x^{2}+y^{2}=25$
Q. 18 (4)
$\mathrm{P}(1,0), \mathrm{Q}(-1,0), \mathrm{R}(2,0)$, Locus of $\mathrm{s}(\mathrm{h}, \mathrm{k})$ if $\mathrm{SQ}^{2}+$ $\mathrm{SR}^{2}=2 \mathrm{SP}^{2}$
$\Rightarrow(\mathrm{h}+1)^{2}+\mathrm{k}^{2}+(\mathrm{h}-2)^{2}+\mathrm{k}^{2}$

$$
=2(\mathrm{~h}-1)^{2}+2 \mathrm{k}^{2}
$$

$\Rightarrow \mathrm{h}^{2}+2 \mathrm{~h}+1+\mathrm{h}^{2}-4 \mathrm{~h}-4=2 \mathrm{~h}^{2}-4 \mathrm{~h}+2$
$\Rightarrow 2 \mathrm{~h}+3=0$ Locus of $\mathrm{s}(\mathrm{h}, \mathrm{k})$
$\Rightarrow 2 \mathrm{x}+3=0$
Parallel to y-axis.
Q. 19 (2)

Slope $=\frac{k+1-3}{k^{2}-5}=\frac{1}{2} \quad \Rightarrow k^{2}-5-2 k+4=0$
$\Rightarrow \mathrm{k}=1 \pm \sqrt{2} \quad \Rightarrow \mathrm{k}^{2}-2 \mathrm{k}-1=0$
$\Rightarrow \mathrm{k}=\frac{2 \pm \sqrt{4+4}}{2}$
$=\frac{2 \pm 2 \sqrt{2}}{2}$

Q. 20 (2)

Let $\mathrm{B}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{C}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
$\therefore \quad 2 \mathrm{x}_{1}+3 \mathrm{y}_{1}-29=0$
and $\mathrm{x}_{2}+2 \mathrm{y}_{2}-16=0$
\because mid-point of BC is $(5,6)$
$\therefore \quad \mathrm{x}_{1}+\mathrm{x}_{2}=10$
and $\mathrm{y}_{1}+\mathrm{y}_{2}=12$

Put the value of x_{2} and y_{2} in (ii), we get
$10-x_{1}+2\left(12-y_{1}\right)-16=0$
$\mathrm{x}_{1}+2 \mathrm{y}_{1}=18$
Now on solving (i) and (v), we get $x_{1}=4$ and $y_{1}=7$
$\therefore \quad \mathrm{B}(4,7)$
$\therefore \quad$ equation of line $B C$ is $y-6=\frac{7-6}{4-5}(x-5)$
$\Rightarrow \quad \mathrm{x}+\mathrm{y}=11$
Q. 21 (2)

$x_{1}+y_{1}=5$
$x_{2}=4$
co - ordinates of G are $\equiv(4,1)$
$\Rightarrow \frac{1+x_{1}+x_{2}}{3}=4$
and $\frac{y_{1}+y_{2}+2}{3}=1$
solving above equations, we get $\mathrm{B} \& \mathrm{C}$.
Q. 22 (4)

Let equation of line is $\frac{x}{a}+\frac{y}{b}=1$
$\frac{\mathrm{a}}{2}=1 \Rightarrow \mathrm{a}=2$
$\frac{\mathrm{b}}{2}=2 \Rightarrow \mathrm{~b}=4$
Hence $\frac{x}{2}+\frac{y}{4}=1 \Rightarrow \quad 2 x+y-4=0$
Q. 23 (3)

Slope of $A B$ is $\tan \theta=\frac{1-0}{3-2}=1$
Q. 26 (3)

$\theta=45^{\circ}$
Hence equation of new line is
$y-0=\tan 60^{\circ}(x-2)$
$y=\sqrt{3} x-2 \sqrt{3}$
$\Rightarrow \sqrt{3} \mathrm{x}-\mathrm{y}-2 \sqrt{3}=0$
Q. 24 (1)
$\theta=\tan ^{-1} \frac{3}{5}, \mathrm{C}=-3$
$\tan \theta=\frac{3}{5}$

$$
\begin{aligned}
& y=\frac{3}{5} x-3 \\
& 3 x-5 y-15=0
\end{aligned}
$$

Q. 25 (4)

$-3=\frac{3 a+0}{5+3}, 5=\frac{0+5 b}{5+3}$
$\Rightarrow \mathrm{a}=-3, \mathrm{~b}=8$

$$
\frac{x}{-8}+\frac{y}{8}=1
$$

$-x+y=8$
$x-y+8=0$

Perpendicular bisector of slopoe of line BC
$\mathrm{m}_{\mathrm{BC}}=\frac{2-0}{1+2}=\frac{2}{3}$
$\mathrm{m}_{\mathrm{AP}}=\frac{-3}{2}$

$A=\left(\frac{1-2}{2}, \frac{2+0}{2}\right) \Rightarrow\left(-\frac{1}{2}, 1\right)$
$y-1=\frac{-3}{2}\left(x+\frac{1}{2}\right) \Rightarrow 4 y-4=-6 x-3$
$\Rightarrow 6 x+4 y=1$
locus of P
Q. 27 (3)

Equation $y-3=m(x-2)$
cut the axis at
$\Rightarrow y=0 \& x=\frac{2 m-3}{m}$
$\Rightarrow \mathrm{x}=0 \& \mathrm{y}=-(2 \mathrm{~m}-3)$
Area $\Delta=12=\left|\frac{1}{2} \cdot \frac{(2 m-3)}{m}\{-(2 m-3)\}\right|$

$(2 m-3)^{2}= \pm 24 m$

$$
4 m^{2}-12 m+9=24 m
$$

or $4 m^{2}-12 m+9=-24 m$
$4 m^{2}-3 y m+9=0$
D >0
or $4 m^{2}+12 m+9=0$ $(2 m+3)^{2}=0$
two distinct root of m
no. of values of m is 3 .
Q. 28 (2)
$2 x+3 y+7=0$
$\tan \theta=\frac{-2}{3} \Rightarrow \sin \theta=\frac{2}{\sqrt{13}}, \cos \theta=\frac{-3}{\sqrt{13}}$

$$
\begin{gathered}
\frac{x-1}{\frac{-3}{\sqrt{13}}}=\frac{y+3}{\frac{2}{\sqrt{13}}}= \pm 3 \\
\left(1-\frac{9}{\sqrt{13}},-3+\frac{6}{\sqrt{13}}\right) \\
\text { or }\left(1+\frac{9}{\sqrt{13}},-\frac{3-6}{\sqrt{13}}\right)
\end{gathered}
$$

Q. 29 (1)

Image of A in $x-y+5=0$ is

$\frac{x-1}{1}=\frac{y+2}{-1}=-2\left(\frac{1+2+5}{2}\right)=-8$
$x=-7, y=6$
Image of $A(1,-2)$ in $x+2 y=0$
$\frac{x-1}{1}=\frac{y+2}{2}=-2\left(\frac{1-4}{5}\right)=\frac{6}{5}$
$x=\frac{11}{5}, y=\frac{2}{5}$
Hence equation of BC is $y-6=\frac{(6-2 / 5)}{(-7-11 / 5)}(x+7)$

$$
\begin{aligned}
& y-6=\frac{28}{-28}(x+7) \\
& y-6=\frac{-14}{23}(x+7) \\
& \Rightarrow 14 x+23 y-40=0
\end{aligned}
$$

Q. 30 (4)
\perp to $3 \mathrm{x}+\mathrm{y}=3$, passes $(2,2)$

$$
\begin{aligned}
& m=+\frac{1}{3} \&(2,2) \\
& y-2=+\frac{1}{3}(x-2) \\
& \Rightarrow-x+3 y=4 \Rightarrow \frac{x}{-4}+\frac{y}{\frac{4}{3}}=1 \Rightarrow b=\frac{4}{3}
\end{aligned}
$$

Q. 31 (3)
required line should be
ax + by $+\lambda=0$ satsify (c, d)
$\mathrm{ac}+\mathrm{bd}+\lambda=0 \Rightarrow \lambda=-(\mathrm{ac}+\mathrm{bc})$
$a x+b y-(a c+b c)=0$
$\Rightarrow \mathrm{a}(\mathrm{x}-\mathrm{c})+\mathrm{b}(\mathrm{y}-\mathrm{d})=0$
(2)
$\mathrm{L}_{1}: \mathrm{x}+\mathrm{y}-3=0$,
$L_{2}: x-3 y+9=0$
$\mathrm{L}_{3}: 3 \mathrm{x}-2 \mathrm{y}+1=0$
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}\frac{15}{7} & \frac{26}{7} & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 1\end{array}\right|$

$=\frac{1}{2}\left[\frac{15}{7}(3-2)+0+1\left(\frac{26}{7}-3\right)\right]$
$=\frac{1}{2}\left[\frac{15}{7}+\frac{5}{7}\right]=\frac{10}{7}$ sq.units
Aliter : by parallelogram

$\Delta=\frac{1}{2}\left|\frac{\left(c_{1}-c_{2}\right)\left(d_{1}-d_{2}\right)}{\left(m_{1}-m_{2}\right)}\right|$
Q. 33 (1)
$y-x+5=0, \sqrt{3} x-y+7=0$
$\mathrm{m}_{1}=1, \mathrm{~m}_{2}=\sqrt{3}$
$\theta_{1}=45^{\circ}, \theta_{2}=60^{\circ}$
$\theta=60^{\circ}-45^{\circ}=15^{\circ}$
Aliter $\tan \theta=\frac{\sqrt{3}-1}{1+\sqrt{3}}=\frac{4-2 \sqrt{3}}{3-1}=2-\sqrt{3}$
$\Rightarrow \theta=15^{\circ}$
Q. 34 (2)

Let coordinates of point P by parametric
$\mathrm{P}\left(2+\mathrm{r} \cos 45^{\circ}, 3+\mathrm{r} \sin 45^{\circ}\right)$
It satisfies the line $2 x-3 y+9=0$
$2\left(2+\frac{r}{\sqrt{2}}\right)-3\left(3+\frac{r}{\sqrt{2}}\right)+9=0 \Rightarrow r=4 \sqrt{2}$
Q. 35 (2)
$a^{2} x+a b y+1=0$
origin and $(1,1)$ lies on same side.
$\mathrm{a}^{2}+\mathrm{ab}+1>0 \quad \forall \mathrm{a} \in \mathrm{R}$
$\mathrm{D}<0 \Rightarrow \mathrm{~b}^{2}-4<0 \quad \Rightarrow \mathrm{~b} \in(-2,2)$
but $\mathrm{b}>0 \Rightarrow \mathrm{~b} \in(0,2)$
Q. 36 (1)
$\mathrm{L}_{1}: 2 \mathrm{x}+3 \mathrm{y}-4=0$
$\mathrm{L}_{2}: 6 \mathrm{x}+96+8=0, \mathrm{P}(8,-9)$
$\mathrm{L}_{1}(\mathrm{P})=2.8-3.9-4=16-27-4=-15<0$
$\mathrm{L}_{2}(\mathrm{O})=48-81+8+8=-25<0$
point $(8,-9)$ lies same side of both lines.
Q. 37 (1)
$L_{1}: x+y=5, L_{2}: y-2 x=8$
$L_{3}: 3 y+2 x=0, L_{4}: 4 y-x=0$
$\mathrm{L}_{5}:(3 \mathrm{x}+2 \mathrm{y})=6$
vertices of quadrilateral
$0(0,0), \mathrm{A}(4,1), \mathrm{B}(-1,6), \mathrm{C}(-3,2)$

$L_{5}(0)=-6<0$
$\mathrm{L}_{5}(\mathrm{~A})=12+2-6=8>0$
$\mathrm{L}_{5}(\mathrm{~B})=-3+12-6=3>0$
$L_{5}(\mathrm{C})=-9+4-6=-11<0$
$\mathrm{O} \& \mathrm{C}$ points are same side
\& A \& B points are other same side w.r.t to L_{5}
So L_{5} divides the quadrilateral in two quadrialteral
Aliter :
If abscissa of A is less then abscissa of B
\Rightarrow A lies left of B
otherwise A lies right of B
Q. 38 (2)
$\mathrm{P}(\mathrm{a}, 2)$ lies between
$\mathrm{L}_{1}: \mathrm{x}-\mathrm{y}-1=0 \&$

$L_{2}: 2(\mathrm{x}-\mathrm{y})-5=0$
Method-I
$\mathrm{L}_{1}(\mathrm{P}) \mathrm{L}_{2}(\mathrm{P})<0$
$(a-3)(2 a-9)<0$
$\Rightarrow \mathrm{P}(\mathrm{a}, 2)$ lies on $\mathrm{y}=2$
intersection with given lines
$x=3 \& x=\frac{9}{2}$
$a>3 \& a<\frac{9}{2}$
(gemetrically)
$a \in\left(3, \frac{9}{2}\right)$
Q. 39 (4)
$a x+b y+c=0$
$\frac{3 a}{4}+\frac{b}{2}+c=0$
$\operatorname{compare} \operatorname{both}(x, y) \equiv\left(\frac{3}{4}, \frac{1}{2}\right)$
Hence given family passes through $\left(\frac{3}{4}, \frac{1}{2}\right)$
Q. 40 (2)

$$
\begin{aligned}
& \left|\begin{array}{lll}
\sin ^{2} A & \sin A & 1 \\
\sin ^{2} B & \sin B & 1 \\
\sin ^{2} C & \sin C & 1
\end{array}\right|=0 \\
& \Rightarrow(\sin A-\sin B)(\sin B-\sin C)(\sin C-\sin C)=0
\end{aligned}
$$

$\Rightarrow \mathrm{A}=\mathrm{B}$ or $\mathrm{B}=\mathrm{C}$ or $\mathrm{C}=\mathrm{A}$
any two angles are equal
$\Rightarrow \Delta$ is isosceles
Q. 41 (4)
$(p+2 q) x+(p-3 q) y=p-q$
$p x+p y-p+2 q x-3 q y+q=0$
$\mathrm{p}(\mathrm{x}+\mathrm{y}-1)+\mathrm{q}(2 \mathrm{x}-3 \mathrm{y}+1)=0$
passing through intersection of
$x+y-1=0 \& 2 x-3 y+1=0$ is $\left(\frac{2}{5}, \frac{3}{5}\right)$
Q. 42 (1)

PM is maximum if required
line \perp intersection of
$3 x+4 y+6=0$
$\Rightarrow(-2,0)$
$x+y+2=0$
$\mathrm{m}_{\mathrm{AP}}=\frac{3-\mathrm{O}}{2+2}=\frac{3}{4}$

Slope $m=-\frac{4}{3}$
$y-0=-\frac{4}{3}(x+2) \Rightarrow 4 x+3 y+8=0$

Q. 43 (3)

$L_{1}: P x+q y=1$
$\mathrm{L}_{2}: \mathrm{qx}+\mathrm{py}=1$
$\mathrm{L}_{1}+\lambda \mathrm{L}_{2}=0$
$(p x+q y-1)+\lambda(q x+p y-1)=0$

$\Rightarrow \lambda=\frac{\left(\mathrm{p}^{2}+\mathrm{q}^{2}-1\right)}{(2 \mathrm{pq}-1)} \Rightarrow(2 \mathrm{pq}-1)(\mathrm{px}+\mathrm{qy}-1)$
$=\left(p^{2}+q^{2}-1\right)(q x+p y-1)$
Q. 44 (1)
$\mathrm{p}=\left|\frac{-22-64-5}{2^{2}+(-16)^{2}}\right|=\frac{91}{260}$

$q=\left|\frac{-64 \times 11+8 \times 4+35}{64^{2}+8^{2}}\right|$
$\mathrm{p}<\mathrm{q}$ Hence $2 \mathrm{x}-16 \mathrm{y}-5=0$ is a cute angle bisector
Q. 45

Equation of $\mathrm{AD}: \mathrm{y}-4=\frac{2}{-1}(\mathrm{x}-4)$
$\Rightarrow y-4=-2 x+8$

$\Rightarrow 2 x+y=12$
Q. 46 (4)
$m=\frac{3}{4} \Rightarrow m_{P Q}=-\frac{4}{3}$
equation of PQ
$y-5=-\frac{4}{3} x$

$4 x+3 y-15=0$
$\Rightarrow 25 \mathrm{x}=75$
$\& 3 x-4 y-5=0 \Rightarrow x=3 \& y=1$
Q(3, 1)
Q. 47 (2)

Point of reflection of $(0,0)$
w.r.t. to $4 \mathrm{x}-2 \mathrm{y}-5=0$
$\mathrm{OA}=\left|\frac{-5}{\sqrt{4^{2}+2^{2}}}\right|=\frac{2}{2 \sqrt{5}}$
$=\frac{\sqrt{5}}{2}=\mathrm{AB}$
equtaion of line OB

$$
\frac{x-0}{-\frac{2}{\sqrt{5}}}=\frac{y-0}{\frac{1}{\sqrt{5}}}= \pm \sqrt{5}
$$

$\Rightarrow \mathrm{OB}=\sqrt{5}$
$x=\mp \sqrt{2}, y= \pm 1 \quad \Rightarrow B(2,-1)$

Aliter :

Image of origin w.r. to line

$$
\begin{aligned}
& \frac{x-0}{4}=\frac{y-0}{-2}=\frac{-2(4.0-2.0-5)}{4^{2}+(-2)^{2}} \\
& \Rightarrow \frac{x}{4}=\frac{y}{-2}=\frac{10}{20} \Rightarrow x=2, y=-1, B(2,-1)
\end{aligned}
$$

Q. 48 (4)
$\mathrm{m}_{1}+\mathrm{m}_{2}=-10$
$\mathrm{m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{1}$
given $m_{1}=4 m_{2} \Rightarrow m_{2}=-2, m_{1}=-8$,
$\mathrm{a}=16$
Q. 49 (1)

$$
\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0
$$

part of angle besection is $\frac{x^{2}-y^{2}}{\sqrt{3}-\sqrt{3}}=\frac{x y}{(-2)}$
$\Rightarrow \quad \mathrm{x}^{2}-\mathrm{y}^{2}=0$
$\Rightarrow y^{2}-x^{2}=0$
Q. 50 (1)
$a x^{2}+2 h x y+b y^{2}=0$
$\mathrm{m}_{1}+\mathrm{m}_{2}=\frac{-2 \mathrm{~h}}{\mathrm{~b}}, \mathrm{~m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{\mathrm{b}}$
Relation of slopes of image lines

$$
\begin{aligned}
& \left(m_{1}^{\prime}+m_{2}^{\prime}\right)=-\left(m_{1}+m_{2}\right) \\
& =-\left(\frac{-2 h}{b}\right)=\frac{2 h}{b} \quad\left\{m_{1}^{\prime}=\tan \left(\alpha_{1}\right)\right.
\end{aligned}
$$

$\mathrm{m}_{1}^{\prime} \mathrm{m}_{2}^{\prime}=\left(-\mathrm{m}_{1}\right)\left(-\mathrm{m}_{2}\right)$
$=\mathrm{m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{\mathrm{b}}$
$\left(\frac{y}{x}\right)^{2}-\left(m_{1}^{\prime}+m_{2}^{\prime}\right)\left(\frac{y}{x}\right)+m_{1}^{\prime} m_{2}^{\prime}=0$
$\Rightarrow\left(\frac{y}{x}\right)^{2}-\frac{2 h}{b}\left(\frac{y}{x}\right)+\frac{a}{b}=0$
$\Rightarrow \mathrm{by}^{2}-2 \mathrm{hxy}+\mathrm{ax}^{2}=0$
$\Rightarrow \mathrm{ax}^{2}-2 \mathrm{hxy}+\mathrm{by}^{2}=0$
Q. 51
(1)

Homogenize given curve with given line
$3 x^{2}+4 x y-4 x(2 x+y)+1(2 x+y)^{2}=0$ $3 x^{2}+4 x y-8 x^{2}-4 x y+4 x^{2}+y^{2}+4 x y=$

$-x^{2}+4 x y+y^{2}=$
coeff. $x^{2}+$ coeff. $y^{2}=0$
Hence angle is 90°

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (C)

$\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{my}_{2}\right), \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$

only three sides can be made parallel to corresponding sides of triangle passing through vertex of triangle respectively
\Rightarrow So no. of IIgrams is 3 .
Q. 2 (A)

By geometry

$$
\begin{equation*}
a^{2}+b^{2}=(a+b)^{2} \tag{i}
\end{equation*}
$$

By section formula

$$
\mathrm{h}=\frac{\alpha}{\mathrm{a}+\mathrm{b}} \Rightarrow \alpha=\frac{\mathrm{n}(\mathrm{a}+\mathrm{b})}{\mathrm{a}}
$$

$$
k=\frac{\beta}{a+b} \Rightarrow \beta=\frac{k(a+b)}{b}
$$

Put value of α and β in (i)

$$
\begin{aligned}
& \frac{h^{2}(a+b)^{2}}{a^{2}}+\frac{k^{2}(a+b)^{2}}{b^{2}}=(a+b)^{2} \\
\Rightarrow & \frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}=1
\end{aligned}
$$

Locus of ' p ' is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Q. 3 (B)

First position
$(4,-2 \sqrt{3})=(4 \cos (-\alpha), r \sin (-\alpha))$
$\mathrm{r} \cos \alpha=4$

$r \sin \alpha=+2 \sqrt{3}$
$\& \sin \theta^{\circ}=\frac{1}{2}, \cos \theta=\frac{\sqrt{3}}{2}$
Last position w.r.t is x^{\prime}
$(\mathrm{r} \cos (-\theta-\mathrm{a}, \mathrm{r} \sin (-\theta-\alpha))$
$=(r \cos (\theta+\alpha),-r(\sin (\theta+\alpha))$
$=((4 \cos \theta \cos \alpha-r \sin \alpha \sin \alpha))$,

$$
m(-r \cos \alpha \sin \theta-r \sin \alpha \cos \theta)
$$

$=\left(\left(4 \cdot \frac{\sqrt{3}}{2}-2 \sqrt{3}, \frac{1}{2}\right),\left(-4 \cdot \frac{1}{2}-2 \sqrt{3} \cdot \frac{\sqrt{3}}{2}\right)\right)$
$=((2 \sqrt{3}-\sqrt{3}),(-2-3))=(\sqrt{3},-5)$

Q. 4 (B)

Before rotation
$(2,1)=(4 \cos \alpha, r \sin \alpha)$
$\mathrm{r} \cos \alpha=2, \mathrm{r} \sin \alpha=1$
new position
$\Rightarrow \mathrm{x}^{\prime}=4 \cos \alpha \cos \alpha-\mathrm{r} \sin \alpha \sin \theta$

$$
\begin{aligned}
& =2 \cdot \frac{\sqrt{3}}{2}+2 \cdot\left(\frac{-1}{2}\right)=\frac{\sqrt{3}-2}{2} \\
& \left(x^{\prime}, y^{\prime}\right)=\left(\frac{2 \sqrt{3}+1}{2}, \frac{\sqrt{3}-2}{2}\right)
\end{aligned}
$$

Q. 5 (D)

Let side of square is a units
equation of $O C$ is $2 \mathrm{y}=\mathrm{x}$
$S(2 a, a) \Rightarrow R(3 a, a)$
Slope $m_{B C}=\frac{0-1}{3-2}=-1$
$\Rightarrow \angle \mathrm{B}=45^{\circ}$ in $\triangle \mathrm{QBR}$

$$
\begin{aligned}
& \mathrm{QB}=\mathrm{a} \\
& \mathrm{OB}=\mathrm{OP}+\mathrm{PQ}=\mathrm{QB} \\
& 3=2 \mathrm{a}+\mathrm{a}+\mathrm{a} \Rightarrow \mathrm{a}=\frac{3}{4} \\
& \mathrm{P}\left(\frac{3}{2}, 0\right), \mathrm{Q}\left(\frac{9}{4}, 0\right), \mathrm{R}\left(\frac{9}{4}, \frac{3}{4}\right) \& \mathrm{~S}\left(\frac{3}{2}, \frac{3}{4}\right)
\end{aligned}
$$

Q. 6 (D)

OA line $y=x, m_{1}=\tan \theta_{1}=1$
OB line $\mathrm{y}=7 \mathrm{~m}, \mathrm{~m}_{2}=\tan \theta_{2}=7$
A, B lies in ${ }^{\text {st }}$ quadrant

$$
\mathrm{OA}=\mathrm{OB}=\mathrm{r} \text { (let) }
$$

OA line $\frac{x}{\cos \theta_{1}}=\frac{y}{\sin \theta_{1}}=r \Rightarrow \frac{x}{\frac{1}{\sqrt{2}}}=\frac{y}{\frac{1}{\sqrt{2}}}=r$
$A\left(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}}\right)$

OB line $\frac{x}{\frac{1}{5 \sqrt{2}}}=\frac{y}{\frac{7}{5 \sqrt{2}}}=r \Rightarrow B .\left(\frac{r}{4 \sqrt{2}}, \frac{7 r}{5 \sqrt{2}}\right)$
Slope $\mathrm{m}_{\mathrm{AB}}=\frac{\frac{7 \mathrm{r}}{5 \sqrt{2}}-\frac{\mathrm{r}}{\sqrt{2}}}{\frac{1}{5 \sqrt{2}}-\frac{\mathrm{r}}{\sqrt{2}}}=\frac{7 r-5 r}{\mathrm{r}-5 \mathrm{r}}=\frac{2}{-4}=-\frac{1}{2}$
Q. 7 (D)
$\mathrm{OP}=\sqrt{2}, \mathrm{PQ}=3 \sqrt{2} \quad \mathrm{OQ}=4 \sqrt{2}$
OQ makes angle with $(+) \mathrm{x}$-axis in anti clockwise $\theta=$ $270^{\circ}+45^{\circ}$
equation L_{2}
$\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=4 \sqrt{2}$
$x \cos \left(270^{\circ}+45^{\circ}\right)+y \sin \left(270^{\circ}+45^{\circ}\right)=4 \sqrt{2}$

$x \sin 45^{\circ}+y\left(-\cos 45^{\circ}\right)=4 \sqrt{2}$
$x-y=8$
Aliter :
$y-x+2=0$
$\Rightarrow x-y-2=0$
Parallel lines $x-y+\lambda=0$

Line shift to (+) x -axis
So line is $x-y-8=0$
Q. 8
(D)
$\mathrm{D}\left(4, \frac{3}{2}\right), \mathrm{AB}=\sqrt{4+1}=\sqrt{5}$

$$
\begin{aligned}
& \mathrm{PD}=\sqrt{5-\frac{5}{4}}=\sqrt{\frac{15}{2}} \\
& \text { G.D. }=\frac{1}{3} \cdot \frac{\sqrt{15}}{2}=\frac{\sqrt{15}}{2}
\end{aligned}
$$

[Centroid \equiv orthocentre in equilateral]
$m_{P D}=\frac{-1}{m_{A B}}=\frac{-1}{-\frac{1}{2}}=2$
$=\tan \theta \Rightarrow \frac{2}{\sqrt{5}}, \cos \theta=\frac{1}{\sqrt{5}}$
equation of p^{\prime} is
$\frac{x-y}{\frac{1}{\sqrt{5}}}=\frac{y-\frac{3}{2}}{\frac{2}{\sqrt{5}}}= \pm \frac{\sqrt{5}}{2 \sqrt{3}}$
$x=4 \pm \frac{1}{2 \sqrt{3}}, y=\frac{3}{2} \pm \frac{1}{\sqrt{3}}$
$G\left(4+\frac{\sqrt{3}}{6}, \frac{3}{2}+\frac{\sqrt{3}}{3}\right), G^{\prime}\left(4-\frac{\sqrt{3}}{6}, \frac{3}{2}-\frac{\sqrt{3}}{3}\right)$
$\mathrm{OG}>\mathrm{OG}^{\prime} \Rightarrow\left(4+\frac{\sqrt{3}}{6}, \frac{3}{2}+\frac{\sqrt{3}}{3}\right)$
Q. 9 (C)
$\mathrm{P}(2,0), \mathrm{Q}(4,2)$
line $P Q$ is $x-y=2$
$\mathrm{m}_{\mathrm{PQ}}=+1$
$\Rightarrow \theta=45^{\circ}$
required line is
parallel to y -axis
(according questions)
$\Rightarrow \mathrm{x}=2$

Q. 10 (B)
here $\tan \theta=\frac{1}{5}$
$\therefore \tan 2 \theta=\frac{2\left(\frac{1}{5}\right)}{1-\left(\frac{1}{5}\right)^{2}}=\frac{5}{12}$
\therefore required line $y=\frac{5 x}{12}$
Q. 11 (C)
$\mathrm{p}=\left|\frac{0+0-\mathrm{a}}{\sqrt{5}}\right|=\frac{\mathrm{a}}{\sqrt{5}}$

$\tan 45^{\circ}=\frac{\mathrm{p}}{\mathrm{x}} \Rightarrow \mathrm{p}=\mathrm{x}$
Hence area $=\frac{1}{2}(2 x)(p)=p x=p^{2}=\mathrm{a} / 5$
Q. 12 (C)

$\tan 45^{\circ}=\left|\frac{m+\frac{1}{2}}{1-\frac{m}{2}}\right| \Rightarrow \pm 1=\frac{2 m+1}{2-m}$
$\Rightarrow \mathrm{m}=\frac{1}{3},-3$
\therefore Equation of AC
$y-2=\frac{1}{3}(x) \Rightarrow x-3 y+6=0$
Equation of $\mathrm{BD} \mathrm{y}=-3(\mathrm{x}-4) \Rightarrow 3 \mathrm{x}+\mathrm{y}-12=0$
From (i) \& (ii)
$x=3 \& y=3$

Q. 13 (D)

$\mathrm{x}=2 \mathrm{y}, \mathrm{A}(3,0)$
$y=m(x-3)$
$\mathrm{m}_{1}=\frac{1}{2}$ (given line)
$\tan 45^{\circ}=\left|\frac{m-\frac{1}{2}}{1+\frac{m}{2}}\right|$

$\Rightarrow\left|1+\frac{\mathrm{m}}{2}\right|=\left|\mathrm{m}-\frac{1}{2}\right| \quad \Rightarrow\left(1+\frac{\mathrm{m}}{2}\right)$
$=\left(m-\frac{1}{2}\right)$ or $\frac{3 m}{2}=-\frac{1}{2}$
$\Rightarrow \mathrm{m}=3$
$\mathrm{m}=-\frac{1}{3}$
lines are $y=3(x-3)$
$\Rightarrow 3 x-y-9=0 \&$

$$
y=-\frac{-1}{3}(x-3)
$$

$\Rightarrow \mathrm{x}+3 \mathrm{y}-3=0$
Q. 14 (B)
$L_{1}: x+\sqrt{3} y=2, L_{2}: a x+b y=1, q=45^{\circ}$,
$L_{3}=y \sqrt{3} x$
$\left|\begin{array}{ccc}1 & \sqrt{3} & -2 \\ a & b & -1 \\ \sqrt{3} & -1 & 0\end{array}\right|=0$

$$
\begin{align*}
& \Rightarrow \quad \sqrt{3}(-\sqrt{3}+2 b)+(-1+2 a)=0 \\
& \Rightarrow a+\sqrt{3} b=2 \tag{i}
\end{align*}
$$

$m_{1}=\frac{-1}{\sqrt{3}}, m_{2}=-\frac{a}{b}$
$\tan 45^{\circ}=\left|\frac{-\frac{1}{\sqrt{3}}+\frac{a}{b}}{1+\frac{a}{\sqrt{3} b}}\right|$
$\Rightarrow|a+\sqrt{3} b|=|\sqrt{3} a-b|$
$\Rightarrow(\mathrm{a}+\sqrt{3} \mathrm{~b})^{2}+2 \sqrt{3} \mathrm{ab}=3 \mathrm{a}^{2}+\mathrm{b}^{2}-2 \sqrt{3} \mathrm{ab}$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}-2 \sqrt{3} \mathrm{ab}$
squaring (i) \& adding (ii)
$2 a^{2}+a b^{2}=4 \Rightarrow a^{2}+b^{2}=2$

Q. 15 (B)

Oragin $R\left(a^{2}, a+1\right)$ lies same side w.r.t. to given lines

$$
\begin{aligned}
& \mathrm{a}^{2}+2 \mathrm{a}+2-5<0 \\
& \Rightarrow \mathrm{a}^{2}+2 \mathrm{a}-3<0 \\
& \Rightarrow(\mathrm{a}+3)(\mathrm{a}-1)<0 \\
& \Rightarrow \mathrm{a} \in(-3,1) \\
& 3 \mathrm{a}^{2}-(\mathrm{a}+1)+1>0 \\
& \Rightarrow 3 \mathrm{a}^{2}-\mathrm{a}>0 \\
& \Rightarrow \mathrm{a}(3 \mathrm{a}-1)>0 \\
& \Rightarrow \mathrm{a} \in(\infty, 0) \cup\left(\frac{1}{3}, \infty\right)
\end{aligned}
$$

take intersection we get $\mathrm{a} \in(-3,0) \cup\left(\frac{1}{3}, 1\right)$
Q. 16 (A)

$a(a-8)>0 \quad \& a(a-3)>0$
$a \in(-\infty, 0) \cup(8, \infty) \& a \in(-\infty, 0) \cup(3, \infty)$
$\Rightarrow \mathrm{a} \in(-\infty, 0) \cup(8, \infty)$
Q. 17 (B)
P lies on $2 x-y+5=0$
$|\mathrm{PA}-\mathrm{PB}|$ is maximum
we know
b<a+c
$\mathrm{b}-\mathrm{a}<\mathrm{c}$

If $b-a=c$
then $(P-P B)$ is max.
\Rightarrow PBA colinear
Slope $\mathrm{m}_{\mathrm{AB}}=1=\tan \theta \quad$ If $\mathrm{PB}=\mathrm{r}$
$\frac{x-2}{\frac{1}{\sqrt{2}}}=\frac{y+4}{\frac{1}{\sqrt{2}}}=r \Rightarrow x=\frac{r}{\sqrt{2}}+2, y=\frac{r}{\sqrt{2}}-4$
Satisfy given equation
$2\left(\frac{r}{\sqrt{2}}+2\right)-\left(\frac{r}{\sqrt{2}}-4\right)+5=0$
$2 \frac{r}{\sqrt{2}}+4-\frac{r}{\sqrt{2}}+4+5=0$
$\frac{r}{\sqrt{2}}=-13 \quad \Rightarrow r=-13 \sqrt{2}$
$\mathrm{P}\left(\frac{-13 \sqrt{2}}{\sqrt{2}}+2, \frac{-13 \sqrt{2}}{\sqrt{2}}-4\right) \equiv(-11,-17)$
Q. 18 (D)
$L_{1}: 2 x-3 y-6=0$
$L_{2}: 3 x-y+3=0$
$L_{3}: 3 x+4 y-12=0 \quad P(a, 0), Q(0, \beta)$
By geometry origin lies in Δ

$$
\begin{aligned}
& \mathrm{L}_{1}(0)<0 \& \mathrm{~L}_{2}(0)>0 \mathrm{~L}_{3}(0)<3 \\
\Rightarrow & \mathrm{~L}_{1}(\mathrm{P}) \leq 0 \& \mathrm{~L}_{2}(\mathrm{P}) \geq 0 \& \mathrm{~L}_{3}(\mathrm{P}) \leq 0 \\
& \alpha-3 \& \mathrm{a}+1 \geq 0 \& \mathrm{a} \leq 4 \\
\Rightarrow & \mathrm{a} \in[-1,3] \\
\Rightarrow & \mathrm{L}_{1}(\mathrm{Q}) \leq 0 \& \mathrm{~L}_{2}(\mathrm{Q}) \geq 0 \& \mathrm{~L}_{3}(\mathrm{Q}) \leq 0 \\
& -3 \beta-6 \leq 0 \&-\mathrm{b}+3 \geq 0 \& 4 \beta-12 \leq 0 \\
& \beta \geq-2 \& \beta \leq 3 \beta \leq 3 \& \beta \leq 3 \Rightarrow \beta \in[-2,3]
\end{aligned}
$$

Q. 19 (A)

Point $P\left(1+\frac{t}{\sqrt{2}}, 2+\frac{t}{\sqrt{2}}\right)$ lies between given line

Hence $\left(1+\frac{t}{\sqrt{2}}\right)+2\left(2+\frac{t}{\sqrt{2}}\right)-1=0$

$$
5+\frac{3 t}{\sqrt{2}}-1=0 \Rightarrow t=-\frac{4 \sqrt{2}}{3}
$$

Now, $2\left(1+\frac{t}{\sqrt{2}}\right)+4\left(2+\frac{t}{\sqrt{2}}\right)-15=0$
$\Rightarrow 10+\frac{6 \mathrm{t}}{\sqrt{2}}-15=0 \Rightarrow \mathrm{t}=\frac{5 \sqrt{2}}{6}$
Hence $\mathrm{t} \in\left(\frac{-4 \sqrt{2}}{3}, \frac{5 \sqrt{2}}{6}\right)$.
Q. 20 (D)

$$
\begin{aligned}
& \left|\begin{array}{lll}
a & 1 & 1 \\
1 & b & 1 \\
1 & 1 & c
\end{array}\right|=0 a, b \in R, a \neq 1, b \pm 1, c \neq c \\
& C_{2} \rightarrow C_{2} \rightarrow C_{1} \& C_{3} \rightarrow C_{3} \rightarrow C_{1} \\
& \Rightarrow \\
& \quad \begin{array}{l}
a(b-1)(c-1)-(1-a)(c-1) \\
\\
+1(0-(1-a)(b-1))=0 \\
\Rightarrow \\
\frac{a}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=0 \\
\Rightarrow \\
\left(1+\frac{a}{1-a}\right)+\frac{1}{1-b}+\frac{1}{1-c}=1 \\
\Rightarrow \\
\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1
\end{array}
\end{aligned}
$$

Q. 21 (C)
$2|x|+3|y| \leq 6$
area $\mathrm{ABCD}=4(\triangle \mathrm{OAB})$

$=4\left(\frac{1}{2} \cdot 2 \times 3\right)=12$ sq. units

Q. 22 (D)

Let a line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
$P_{1}+P_{2}+P_{3}=0$
$\frac{3 a+c}{\sqrt{a^{2}+b^{2}}}+\frac{3 b+c}{\sqrt{a^{2}+b^{2}}}+\frac{2 a+2 b+c}{\sqrt{a^{2}+b^{2}}}=0$

$5 a+5 b+3 c=0$
$a\left(\frac{5}{3}\right)+b\left(\frac{5}{3}\right)+C=0$
$\Rightarrow\left(\frac{5}{3}, \frac{5}{3}\right)$ satisfy the given line
\Rightarrow fix point is $\left(\frac{5}{3}, \frac{5}{3}\right)$ which is centroid of $\triangle \mathrm{ABC}$
Q. 23 (C)
point of intersection of $x+3 y-2=0$ and $x-7 y+5$
$=0$ is $\left(-\frac{1}{10}, \frac{7}{10}\right)$
$\left(\frac{-\frac{1}{3}-m}{1-\frac{m}{3}}\right)=-\left(\frac{-\frac{1}{3}-\frac{1}{7}}{1-\frac{1}{21}}\right)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{-1-3 m}{3-m}=\frac{10}{20}=\frac{1}{2} \\
& \Rightarrow-2-6 m=3-m \\
& \Rightarrow m=-1
\end{aligned}
$$

Hence requred equation

$$
\begin{aligned}
& y-\frac{7}{10}=-1\left(x+\frac{7}{10}\right) \\
\Rightarrow & 10 y-7=-10 x-1 \Rightarrow 10 x+10 y=6 \Rightarrow 5 x+5 y \\
= & 3
\end{aligned}
$$

Q. 24 (B)

By geometry
Angle bisector of A is origin containing
line $A B: 19 x-8 y+107=0$
Line AC : $-13 x-16 y+163=0$

$$
\frac{19 x-8 y+107}{\sqrt{19^{2}+8^{2}}}=\frac{-13 x-16 y+163}{\sqrt{13^{2}+16^{2}}}
$$

$$
\left\{19^{2}+8^{2}=13^{2}+16^{2}=425\right.
$$

$$
\Rightarrow 32 x+8 y-56=0 \Rightarrow 4 x+y=7
$$

Aliter :

$\mathrm{m}_{\mathrm{AB}}=\frac{19}{8}=\tan \theta_{1}, \mathrm{~m}_{\mathrm{AC}}=\tan \theta_{2}=\frac{-13}{16}$
$\tan 2 \theta=\left|\frac{\frac{19}{8}+\frac{13}{16}}{1-\frac{19}{8} \cdot \frac{13}{6}}\right|=\left|\frac{-136}{13}\right|$
$\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{136}{13}\{\theta$ is acute $\tan \theta>0$
$\Rightarrow 68 \tan ^{2} \theta+13 \tan \theta-68=0 \Rightarrow \tan \theta=0.9$
$\alpha=\theta+\theta_{1}$
$\tan \alpha=\frac{\tan \theta+\tan \theta_{1}}{1-\tan \theta \tan \theta_{1}}$
equation is $(y-11)=\tan \alpha(x+1)$
Q. 25 (A)
at (-1, 4)

$3 x-4 y+12<0$ and $12 x-5 y+7<0$
$\Rightarrow \frac{3 x-4 y+12}{12 x-5 y+12}>0 \quad$ at $(-1,4)$
So we have to take the bisector with + sign
$\frac{3 x-4 y+12}{5}=\frac{12 x-5 y+7}{13}$
$21 x+27 y-121=0$
Q. 26 (C)

Image of $\mathrm{A}(1,2)$ in line mirror $\mathrm{y}=\mathrm{x}$ is $(2,1)$
Image of $b(2,1)$ in $y=0(x-$ axes $)$ is $2,-1)$
Hence, $\alpha=2, \beta=-1$
Q. 27 (B)

Image of $A(3,10)$ in $2 x+y-6=0$

$\frac{x-3}{2}=\frac{y-10}{1}=-2\left(\frac{6+10-6}{2^{2}+1^{2}}\right)$
$\frac{x-3}{2}=\frac{y-10}{1}=-4$
$\mathrm{A}^{\prime}=(-5,6)$
Equation of A'B is $y-3=\left(\frac{6-3}{-5-4}\right)(x-4)$
$y-3=-\frac{1}{3}(x-4)$
$3 y-9=-x+4 \Rightarrow x+3 y-13=0$
Q. 28 (A)

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{AB}}+\mathrm{m}_{\mathrm{PB}}=0 \\
& \frac{2}{1-\mathrm{a}}+\frac{3}{5-\mathrm{a}}=0
\end{aligned}
$$

$\Rightarrow a=\frac{13}{5}$
$m_{A B}=\frac{2}{1-\frac{13}{5}}=\frac{10}{-8}=\frac{5}{-4}$
equation of $A B \Rightarrow y-2=-\frac{-5}{4}(x-1) 5 x+4 y=13$

Q. 29 (C)

Both A \& B are same side of line $2 x-3 y-9=0$
Now, permeter of $\Delta \mathrm{A} p m$ weel be least when pts A, P, B wees be collinear. Let B ' is image of B

Then $\frac{x-0}{2}=\frac{y-4}{-3}=-2\left(\frac{0-12-9}{2^{2}+(-3)^{2}}\right)$

$\Rightarrow \mathrm{B}^{\prime}\left(\frac{84}{13}, \frac{-74}{13}\right)$
Now equation of AB^{\prime} is $\mathrm{y}=\frac{-74}{110}(\mathrm{x}+2)$ point of intersection of given line \& Q is P $\left(\frac{21}{17}, \frac{-37}{17}\right)$.
Q. 30 (C)
(i) Reflection about $\mathrm{y}=\mathrm{x}$ of $(4,1)$ is $(1,4)$

(ii) Now 2 units along (+) x direction $(1+2,4+0) \equiv(3,4)$
(iii) we wish to find

$$
\left(5 \cos \left(\theta+\frac{\pi}{4}\right), 5 \sin \left(\theta+\frac{\pi}{4}\right)\right)
$$

$x=5 \frac{\cos \theta}{\sqrt{2}}-\frac{5 \sin \theta}{\sqrt{2}}=-\frac{1}{\sqrt{2}}$
$y=5 \frac{\sin \theta}{\sqrt{2}}+\frac{5 \cos \theta}{\sqrt{2}}=\frac{7}{\sqrt{2}}$
$(x, y) \Rightarrow\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
Q. 31 (C)
$2 x^{2}+4 x y / p y^{2}+4 x+4 x+q y+1=0$
$\mathrm{a}=2, \mathrm{~b}=-\mathrm{p}, \mathrm{c}=1, \mathrm{f}=-\frac{\mathrm{q}}{2}, \mathrm{y}=2, \mathrm{~h}=2$
$\mathrm{abc}+2 \mathrm{fgh}-\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0$
$\Rightarrow-2 \mathrm{p}+4 \mathrm{q}-\frac{\mathrm{q}^{2}}{2}+4 \mathrm{P}-4=0$
$\Rightarrow 2 P+4 q-\frac{q^{2}}{2}-4=0$
$\perp \Rightarrow \mathrm{a}+\mathrm{b}=0$
$\Rightarrow 4+4 q-\frac{q^{2}}{2}-4=0$

$$
2-p=0
$$

$\Rightarrow q\left(4-\frac{q}{2}\right)=0$

$$
\mathrm{p}=2
$$

$\Rightarrow \mathrm{q}=0, \mathrm{q}=8$
Q. 32 (B)

Let equations of lines represented by the line pair xy
$-3 y^{2}+y-2 x+10=0$ are
$y+c_{1}=0, x-3 y+c_{2}=0$
lines \perp to these lines and passing through origin are
$\mathrm{x}=0, \mathrm{y}=-3 \mathrm{x}$
Joint equation
$x(3 x+y)=0$
$\Rightarrow \quad x y+3 x^{2}=0$
Q. 33 (C)
$x^{2}-2 p x y-y^{2}=0$
pair of angle bisector of this pair $\frac{x^{2}-y^{2}}{1-(-1)}=\frac{x y}{-p}$
$\Rightarrow \mathrm{x}^{2}-\mathrm{y}^{2}+\frac{2}{\mathrm{p}} \mathrm{xy}=0$
compare this bisector pair with $x^{2}-2 q x y-y^{2}=0$
$\frac{2}{p}=-2 q \Rightarrow p q=-1$.
Q. 34 (D)

$$
x^{2}-4 x y+y^{2}=0, x+y+4 \sqrt{6}=0
$$

angle bisector of given pair of st. lines

$\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h} \Rightarrow \frac{x^{2}-y^{2}}{1-1}=\frac{x y}{-2}$
$\Rightarrow x^{2}-y^{2}=0$
$\Rightarrow(x+y)(x-y)=0$
$x+y=0$ is $\|$ to third side
altitude \equiv angle bisector \Rightarrow isosceles Δ
Now $\tan \theta=\left|\frac{2 \sqrt{h^{2} a b}}{a+b}\right|=\left|\frac{2 \sqrt{4-1}}{2}\right|=\sqrt{3}$
$\Rightarrow \theta=60^{\circ}$
\Rightarrow angle between two equal sides is 60°
\Rightarrow equiliteral Δ
Q. 35 (B)
$x^{2}-4 x y+4 y^{2}+x-2 y-6=0$
$(x-2 y+C)(x-2 y+d)=0$
$(x-2 y)^{2}+(C+d) x-2(c+d) y+c d=0$
$\mathrm{c}+\mathrm{d}=1, \mathrm{~cd}=-6$
$\mathrm{c}=3, \mathrm{~d}=-2$
lines are $(x-2 y+3)=0,(x-2 y-2)=0$
distance $=\left|\frac{3-(-2)}{\sqrt{1^{2}+2^{2}}}\right|=\frac{5}{\sqrt{5}}=\sqrt{5}$
Q. 36 (A)
$x y+2 x+2 y+4=0 \& x+y+2=0$
$(x+c)(y+d)=0$
$x y+d x+c y+c d=0$
$\mathrm{d}=2, \mathrm{c}=2$
$\frac{x+z=0}{L_{1}} \& \frac{y+z=0}{L_{2}}$

Q divides in $2: 1$

$\& \frac{x+y+z=0}{L_{3}}$
$\mathrm{L}_{1} \perp \mathrm{~L}_{2} \mathrm{~L}_{2}$
hypotaneous line L_{3}
mid point of hypotenous is circumcentre
$\left(\frac{0-2}{2}, \frac{-2-0}{2}\right)=(-1,-1)$
Q. 37 (B)
$a x \pm b y \pm C=0$
$\mathrm{m}_{1}=-\frac{\mathrm{a}}{\mathrm{b}}, \mathrm{m}_{2}=\frac{\mathrm{a}}{\mathrm{b}}$
$\mathrm{d}_{1}=-\frac{\mathrm{c}}{\mathrm{b}}, \mathrm{d}_{2}=\frac{\mathrm{c}}{\mathrm{b}}$
$\mathrm{d}_{1}=\frac{\mathrm{C}}{\mathrm{b}}, \mathrm{d}_{2}=-\frac{\mathrm{C}}{\mathrm{b}}$
Area of rhombus $=\left|\frac{\left(c_{1}-c_{2}\right)\left(d_{1}-d_{2}\right)}{\left(m_{1}-m_{2}\right)}\right|$
$=\left|\frac{2 \frac{c}{b} \times \frac{2 c}{b}}{2 \frac{a}{b}}\right|=\frac{2 c^{2}}{|a b|}$ sq. units
Q. 38 (B)

Homogenize $5 x^{2}+12 x y-6 y^{2}+4 x-2 y+3=0$ by x $+\mathrm{ky}=1$
$5 x^{2}+12 x y-6 y^{2}+4 x(x+k y)-2 y(x+k y)+3(x+$ $\mathrm{ky})^{2}=0$
it is equally indined with x-axes hence coeff. $x y=0$

$$
12+4 \mathrm{H}-2+6 \mathrm{H}=0
$$

$$
\mathrm{k}=-1
$$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (A, C)

Let requred point is $\mathrm{P} \& \mathrm{Q}$
P divides in 1:2

$\mathrm{P}\left(\frac{9+2 \times 0}{1+2}, \frac{1 \times 12+2 \times 0}{1+2}\right) \equiv(3,4)$

Hence $Q\left(\frac{2 \times 9+1 \times 0}{2+1}, \frac{2 \times 12+1+0}{2+1}\right) \equiv Q(6,8)$
Q. 2 (A, C, D)

Line \perp to $4 \mathrm{x}+7 \mathrm{y}+5=0$ is
$(-3,1) \quad 4 x+7 y+5=0$

$$
7 x-4 y+\lambda=0
$$

It passes through $(-3,1)$ and $(1,1)$
$-11-4+\lambda=0 \Rightarrow \lambda=25$
$7-4+\lambda=0 \Rightarrow \lambda=-3$
Hence lines are $7 x-4 y+25=0,7 x-4 y 3=0$
line 11 to $4 x+7 y+5=0$ passing through $(1,1)$ is $4 x$
$+7 y+\lambda=0$
$\Rightarrow \lambda=-11$
$\Rightarrow 4 x+7 y-11=0$
Q. 3 (A, C)

Let slope of requered line is m

Now, $\mathrm{y}-1=\mathrm{m}(\mathrm{x}-2)$

$$
\begin{aligned}
& \tan 15=\left|\frac{m+\frac{2}{3}}{1-\frac{2 m}{3}}\right|=\left|\frac{3 m+2}{3-2 m}\right| \\
& \Rightarrow \\
& \quad \frac{3 m+2}{3-2 m}= \pm 1 \Rightarrow 3 m+2= \pm(3-2 m) \\
& \Rightarrow m=\frac{1}{5},-5
\end{aligned}
$$

Hence, $y-1=\frac{1}{5}(x-2) \Rightarrow x-5 y+3=0$

$$
y-1=-5(x-2) \Rightarrow 5 x+y-11=0
$$

Q. 4 (A,B,C,D)
$y=\frac{1}{\sqrt{3}} x$
$\tan \theta=\frac{1}{\sqrt{3}}$,

$\sin \theta=\frac{1}{2}, \cos \theta=\frac{\sqrt{3}}{2}$
$\frac{x}{\frac{\sqrt{3}}{2}}=\frac{y}{\frac{1}{2}}= \pm a$
$\Rightarrow A\left(\frac{\mathrm{a} \sqrt{3}}{2}, \frac{\mathrm{a}}{2}\right), \mathrm{A}^{\prime}\left(\frac{-\mathrm{a} \sqrt{3}}{2}, \frac{-\mathrm{a}}{2}\right)$
$D\left(\frac{\sqrt{3} a}{4}, \frac{a}{4}\right), D^{\prime}\left(-\frac{\sqrt{3} a}{4}, \frac{a}{4}\right)$
equation of $B_{1} B_{2}, m_{B_{1} B_{2}}=-\sqrt{3}$
$\frac{x \mp \frac{\sqrt{3} a}{4}}{-\frac{1}{2}}=\frac{y \mp \frac{a}{4}}{\frac{\sqrt{3}}{2}}= \pm \frac{\sqrt{3} a}{2}$
$B_{1}\left(\frac{\sqrt{3} a}{2}, \frac{-a}{2}\right), B_{2}(0, a), B_{3}\left(\frac{-\sqrt{3} a}{2}, \frac{a}{2}\right)$,
Q. 5 (A,C)
$\mathrm{m}_{\mathrm{AB}}=\frac{-\mathrm{b}}{\mathrm{a}}$
$\mathrm{m}_{\mathrm{PQ}}=\frac{\mathrm{a}}{\mathrm{b}}$
parametric form of PQ

$\frac{x-\frac{a}{2}}{\frac{b}{\sqrt{a^{2}+b^{2}}}}=\frac{y-\frac{b}{2}}{\frac{a}{\sqrt{a^{2}+b^{2}}}}= \pm\left(\frac{\sqrt{a^{2}+b^{2}}}{2}\right)$
$\frac{x-\frac{a}{2}}{b}=\frac{y-\frac{b}{2}}{a}= \pm \frac{1}{2}$
$\Rightarrow x=\frac{a}{2} \pm \frac{b}{2}, y=\frac{b}{2} \pm \frac{a}{2}$
$\left(\frac{a \pm b}{2}, \frac{b \pm a}{2}\right)$
Q. 6
(A,B)
Mid point M $(4,3)$

$$
\begin{aligned}
& \mathrm{m}=\frac{2}{2}=1 \mathrm{~m}_{\mathrm{PQ}}=-1 \\
& \mathrm{AB}=\sqrt{2^{2}+\mathrm{q}^{2}}=2 \sqrt{2} \frac{\mathrm{PM}=\sqrt{6}}{\text { line } \mathrm{pp}^{\prime}} \\
& \frac{\mathrm{x}-4}{\frac{1}{\sqrt{2}}}=\frac{\mathrm{y}-3}{\frac{1}{\sqrt{2}}}= \pm \sqrt{6} \\
& \mathrm{x}=4 \pm \sqrt{3} \quad \mathrm{y}=3 \pm \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& x=4 \pm \sqrt{3}, y=3 \pm \sqrt{3} \\
& (4+\sqrt{3}, 3-\sqrt{3}) \&(4 \sqrt{3}, 3+\sqrt{3})
\end{aligned}
$$

Q. 7
(C, D)
Let vertex $\mathrm{A}(\mathrm{a}, \mathrm{a}+3)$
$\Delta \mathrm{ABC}=5$ sq. units
$\frac{1}{2}\left|\begin{array}{ccc}a & a+3 & 1 \\ 2 & 1 & 1 \\ 3 & -2 & 1\end{array}\right|= \pm 5$

$\Rightarrow(3) a-(a+3)(-1)+(-4-3)= \pm 10$
$\Rightarrow 4 \mathrm{a}= \pm 10+4 \quad \Rightarrow \mathrm{a}=\frac{7}{2}, \frac{-3}{2}$
$\mathrm{A}\left(\frac{7}{2}, \frac{13}{2}\right)$ or $\left(-\frac{3}{2}, \frac{3}{2}\right)$
Q. 8 (B, C)

Let slope of given lines
$\mathrm{m}_{1}=\frac{1}{7}, \mathrm{~m}_{2}=\frac{-1}{\sqrt{3}}, \mathrm{~m}_{3}=-1$
Hence interior angle of triangle
$\tan A=\frac{m_{1}-m_{2}}{1+\frac{m}{m_{2}}}=\frac{\frac{1}{7}+\frac{1}{\sqrt{3}}}{1-\frac{1}{7 \sqrt{3}}}=\frac{\sqrt{3}+7}{7 \sqrt{3}-1}>0$

$\tan B=\frac{m_{2}-m_{1}}{1+m_{2} m_{3}}=\frac{-\frac{1}{\sqrt{3}}+1}{1+\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}-1}{\sqrt{3}+1}>0$
$\tan C=\frac{m_{3}-m_{1}}{1+m_{2} m_{1}}=\frac{-1-\frac{1}{7}}{1-\frac{1}{7}}=\frac{-8}{6}<0$

Hence angle C is obt. Therefore circumcentre and orthocentre less outside the triangle.
Q. 9 (A,C)
$L_{1}: x+y=0 m_{1}=-1$
$L_{2}: 3 x+y-4=0 \quad m_{2}=-3$
$L_{3}: x+3 y-4=0$
$m_{3}=-\frac{1}{3}$

Slope is decreasing order
$\mathrm{m}_{3}>\mathrm{m}_{1}>\mathrm{m}_{2}$
$-\frac{1}{3}>-1>-3$
$\mathrm{m}_{3}>\mathrm{m}_{1}>\mathrm{m}_{2}$
$-\frac{1}{3}>-1>-3$
$\tan C=\frac{m_{3}-m_{1}}{1+m_{3} m_{1}}=\frac{-\frac{1}{3}+1}{1+\frac{1}{3}}=\frac{2}{3} \times \frac{3}{4}=\frac{1}{2}$
$\tan \mathrm{A}=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}=\frac{-1+3}{1+3}=\frac{2}{4}=\frac{1}{2}$
$\mathrm{A}=\mathrm{C} \& \mathrm{~B}$ is obtuse.
$\mathrm{A}=\mathrm{C} \& \mathrm{~B}$ is obtuse.
Obtuse isosceles triangle.
Q. 10 (C, D)
$\left|m_{1}-m_{2}\right|=2$
$\mathrm{m}_{1}=\frac{\mathrm{k}-1}{\mathrm{~h}-1}, \mathrm{~m}_{2}=\frac{\mathrm{k}-1}{\mathrm{~h}+1}$
$\Rightarrow\left(\frac{\mathrm{k}-1}{\mathrm{~h}-1}-\frac{\mathrm{k}-1}{\mathrm{~h}+1}\right)^{2}=4$
$\Rightarrow(\mathrm{k}-1)^{2}\left(\frac{2}{\mathrm{~h}^{2}-1}\right)^{2}=4$

$\Rightarrow(\mathrm{k}-1)^{2}=\left(\mathrm{h}^{2}-1\right)^{2}$
$\Rightarrow(\mathrm{y}-1)= \pm\left(\mathrm{x}^{2}-1\right)$
$\Rightarrow y=x^{2}$ or $y=2-x^{2}$
Q. 11 (A, B, D)
Q. 12 (A,D)
$y=2 x+c$

Diagonal bisect each other
mid point of BD is $\mathrm{P}(3,2)$
$y=2 x+C$ passing through P
$\Rightarrow 2=6+c \Rightarrow c=-4$
$\mathrm{AP}=\mathrm{BPO}=\mathrm{CP}=\mathrm{DP}, \mathrm{BP}=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5}$
parametric form of AC
$\tan \theta=2, \mathrm{P}(3,2)$
$\frac{x-3}{\sqrt{5}}=\frac{y-2}{\frac{2}{\sqrt{5}}}= \pm \sqrt{5}$
$x=3 \pm 1, y=2 \pm 2 \Rightarrow A(2,0), C(4,4)$
Q. 13 (A,C)

Lengths from origin
$\left|\frac{c d}{\sqrt{c^{2}+d^{2}}}\right|=\left|\frac{a b}{\sqrt{a^{2}+b^{2}}}\right|$
$\Rightarrow \frac{c^{2} d^{2}}{c^{2}+d^{2}}=\frac{a^{2} b^{2}}{a^{2}+b^{2}} \Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}+\frac{1}{d^{2}}$
all three lines will be concurrent
$\left|\begin{array}{ccc}\frac{1}{a} & \frac{1}{b} & -1 \\ \frac{1}{b} & \frac{1}{a} & -1 \\ \frac{1}{c} & \frac{1}{d} & -1\end{array}\right|=0$
$\Rightarrow \frac{1}{\mathrm{Q}}\left(\frac{-1}{\mathrm{a}}+\frac{1}{\mathrm{~d}}\right)-\frac{1}{\mathrm{~b}}\left(\frac{-1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}\right)-1\left(\frac{1}{\mathrm{bd}}-\frac{1}{\mathrm{ac}}\right)=0$
$\Rightarrow-\frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{b^{2}}-\frac{1}{b c}-\frac{1}{b d}+\frac{1}{a c}=0$
$\Rightarrow \frac{1}{d}\left(\frac{1}{a}-\frac{1}{b}\right)+\frac{1}{c}\left(\frac{1}{a}-\frac{1}{b}\right)-\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{a}-\frac{1}{b}\right)=0$
Q. 14 (A,B)

B should be $(0,0)$
given diagonal AC is
$11 x+7 y=9$
equation of $\mathrm{AC}(4 \mathrm{x}+5 \mathrm{y}+\mathrm{C})(7 \mathrm{x}+2 \mathrm{y}+\mathrm{d})$
$-(4 x+5 y)(7 x+2 y)=0$
$(7 C+4 d) x+(2 C+5 d) y+c d=0$. ..(ii)
compair (i) \& (ii)
$\underbrace{\frac{7 c+4 d}{11}=\frac{2 c+5 d}{7}}=\frac{c d}{-9}$
$49 c+28 d=22 c+55 d$
$\Rightarrow c=d$$\left\{\begin{array}{l}\frac{7 c+4 d}{11}=\frac{c d}{-9} \\ \Rightarrow \quad 9 c+C^{2}=0 \\ C(C+9)=0\end{array}\right.$
$\mathrm{C}=0$ not possible
$\Rightarrow \mathrm{c}=-9 \& \mathrm{~d}=-9$
Diagonal BD is
$(4 x+5 y)(7 x+2 y-9)$
$-(4 x+5 y-9)(7 x+2 y)=0$
$\Rightarrow-9(4 \mathrm{x}+5 \mathrm{y})-(-9)(7 \mathrm{x}+2 \mathrm{y})=0$
$\Rightarrow 3 \mathrm{x}-3 \mathrm{y}=0 \Rightarrow \mathrm{x}-\mathrm{y}=0$
Q. 15 (A, C)

The lines will pass through $(4,5) \&$ parallel to the bisectors between them
$\frac{3 x-4 y-7}{5}= \pm \frac{12 x-5 y+6}{13}$
by taking + sign, we get $\quad 21 x+27 y+121=0$
Now by taking - sign, we get $99 x-77 y-61=0$
so slopes of bisectors are
$-\frac{7}{9}, \frac{9}{7}$
Equation of lines are
$y-5=\frac{-7}{9}(x-4)$
and $\mathrm{y}-5=\frac{9}{7}(\mathrm{x}-4)$
$\Rightarrow 7 x+9 y=73$ and $\quad 9 x-7 y=1$
Q. 16 (A,B)
$L_{1}: 2 x+y=5 L_{2}: x-2 y=3$
Line BC passing throug $(2,3)$
$(y-3)=m(x-2)$
m is equal to slope of

$$
\frac{2 x+y-5}{\sqrt{2^{2}+1}}= \pm \frac{x-2 y-3}{\sqrt{1+2^{2}}}
$$

$\Rightarrow 2 x \mp x+y \pm 2 y=5 \mp 3$
A / B^{2} are
$x+3 y=2 \Rightarrow m=-\frac{1}{3}$
$\& 3 \mathrm{x}-\mathrm{y}=8 \Rightarrow \mathrm{~m}=3$
BC line
$y-3(x-2) \Rightarrow 3 x-y=3$
$\& y-3=-\frac{1}{3}(x-2) \Rightarrow x+3 y=11$

Comprehenssion \# 1 (Q. No. 17 to 19)

Let ABC be an acute angled triangle and AD, BE and CF are its medians, where E and F are the points $(3,4)$ and $(1,2)$ respectively and centroid of $\Delta \mathrm{ABC}$ is $G(3,2)$, then answer the following questions :
Q. 17
(A)
Q. 18 (B)
Q. 19 (C)

Sol. (17, 18, 19)
Let the co-ordinates of $\mathrm{D}(\alpha, \beta)$
then $\frac{\alpha+1+3}{3}=3 \Rightarrow \alpha=5$
and $\frac{\beta+2+4}{3}=2 \Rightarrow \beta=0$
$\therefore \mathrm{D}(5,0)$

Taking $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$

then by $\frac{x_{1}+x_{2}}{2}=1, \frac{x_{2}+x_{3}}{2}=5, \frac{x_{3}+x_{1}}{2}=3$
and $\frac{y_{1}+y_{2}}{2}=2, \frac{y_{2}+y_{3}}{2}=0, \frac{y_{1}+y_{3}}{2}=4$
we get $A(-1,6), B(3,-2), C(7,2)$
equation of $A B$ is $2 x+y=4$
Height of altitude from A is $=\frac{2 \times \operatorname{area}(\triangle \mathrm{ABC})}{\mathrm{BC}}$
$=6 \sqrt{2}$
Comprehension \# 2 (Q. No. 20 to 22)
Q. 20 (B)
Q. 21 (D)
Q. 22 (A)

Sol. 20 AM $+B M \geq A B$
$\mathrm{AM}+\mathrm{BM}=\mathrm{AB}$ (minimum)

$$
\begin{aligned}
& \mathrm{A}(1,2) \\
& \mathrm{A}^{\prime}(-2,-1) \\
& \because \mathrm{AM}=\mathrm{A}^{\prime} \mathrm{M} \\
& \mathrm{~A}^{\prime} \mathrm{M}+\mathrm{BM}=\mathrm{AB} \\
& \text { for } \mathrm{A}^{\prime} \Rightarrow \frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}-2}{2}=\frac{-2(1+2)}{(1+1)}
\end{aligned}
$$

$\mathrm{A}^{\prime}(-2,-1)$
for $\mathrm{AM}+\mathrm{BM}$ to be minimum, $\mathrm{A}^{\prime}, \mathrm{M}, \mathrm{B}$ are collinear
$\because \frac{1}{2}\left|\begin{array}{ccc}-2 & -1 & 1 \\ x & -x & 1 \\ 3 & -1 & 1\end{array}\right|=0$
$\Rightarrow \mathrm{x}=1 \quad \mathrm{y}=-1$
$\mathrm{M}(1,-1)$
Reflection of M in $\mathrm{x}=\mathrm{y}$ is $\mathrm{M}^{\prime}(-1,1)$
Sol. $21|A M-B M| \leq A B$

$|A M-B M|_{\text {max }}=A B$
Only possible when A, M, B are collinear
$\frac{1}{2}\left|\begin{array}{ccc}1 & 2 & 1 \\ 3 & -1 & 1 \\ x & -x & 1\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}1 & 2 & 1 \\ 2 & -3 & 0 \\ x-1 & -x-2 & 0\end{array}\right|=0$
$\Rightarrow 2(-\mathrm{x}-2)+3(\mathrm{x}-1)=0 \Rightarrow \mathrm{x}=7$
$\mathrm{M}(7,-7) \& N(1,1)$
$\mathrm{MN}=\sqrt{36+64}=\sqrt{100}=10$
Sol. $22|A M-B M| \geq 0 \Rightarrow A M-B M=0$ (min)
$\Rightarrow \mathrm{AM}=\mathrm{BM}$
$\Rightarrow(-\mathrm{x}-2)^{2}+(\mathrm{x}-1)^{2}$
$=(-x+1)^{2}+(x-3)^{2}$
$\Rightarrow 2 \mathrm{x}+5=-8 \mathrm{x}+10$

$\Rightarrow 10 x=5 \Rightarrow x=\frac{1}{2}, y=-\frac{1}{2}$
Area of $\triangle \mathrm{AMB}=\frac{1}{2}\left|\begin{array}{ccc}1 & 2 & 1 \\ 3 & -1 & 1 \\ \frac{1}{2} & -\frac{1}{2} & 1\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}1 & 2 & 1 \\ 2 & -3 & 0 \\ -\frac{1}{2} & -\frac{5}{2} & 0\end{array}\right|$
$\Rightarrow \frac{1}{2}\left[2\left(\frac{-5}{2}\right)+3\left(\frac{-1}{2}\right)\right]=\frac{1}{2}\left|\frac{-13}{2}\right|=\frac{13}{4}$.

Comprehension \# 3 (Q. No. 23 to 25)
Q. 23 (B)
Q. 24 (C)
Q. 25 (A)

Sol.

Sol. $23 \mathrm{f}(\alpha, \quad \beta)=\left|\frac{\beta}{\alpha}-\frac{3}{2}\right|+(3 \alpha-2 \beta)^{6}+$
$\sqrt{\mathrm{e} \alpha+2 \beta-2 \mathrm{e}-6} \leq 0$
\therefore every term is zero.
$\frac{\beta}{\alpha}-\frac{3}{2}=0 \Rightarrow 2 \beta=3 \alpha$
$\& \mathrm{e} \alpha+2 \beta=2 \mathrm{e}+6$
$\alpha=2 \therefore \beta=3$
Sol. 24 In $\triangle \mathrm{OAD}, \mathrm{In} \triangle \mathrm{OBE}$,
$\mathrm{OA}=\frac{2}{\cos \theta} \mathrm{OB}=\frac{3}{\sin \theta}$
for OC,
Let equation of OC be
$y=(\tan \theta) x$
$\& x+y=8$
....(2)
Solving (1) \& (2)
$\mathrm{x}(1+\tan \theta)=8$
$\mathrm{x}=\frac{8}{1+\tan \theta}, \mathrm{y}=\frac{8 \tan \theta}{1+\tan \theta}$
are co-ordinates of C
$\mathrm{OC}=\sqrt{\frac{64}{(1+\tan \theta)^{2}}+\frac{64 \tan ^{2} \theta}{(1+\tan \theta)^{2}}}$
$\mathrm{OC}=\frac{8 \sec \theta}{1+\tan \theta}=\frac{8}{\cos \theta+\sin \theta}$
Given OA. OB. OC $=48 \sqrt{2}$
$\sin \theta \cdot \cos \theta \cdot(\sin \theta+\cos \theta)=\frac{1}{\sqrt{2}}$
$\frac{\sin 2 \theta}{2} \sqrt{1+\sin 2 \theta}=\frac{1}{\sqrt{2}}$
put $\sin 2 \theta=\mathrm{t}$
$\therefore \mathrm{t}^{3}+\mathrm{t}^{2}-2=0$
$(t-1)\left(t^{2}+2 t+2\right)=0$
$\mathrm{t}=1 \Rightarrow \sin 2 \theta=1 \Rightarrow \theta=45^{\circ}$
$\therefore \mathrm{OA}=2 \sqrt{2} ; \mathrm{OB}=3 \sqrt{2} ; \mathrm{OC}=4 \sqrt{2}$
Sol. $25 \mathrm{y}=(\tan \theta) \mathrm{x}$
$\Rightarrow y=x$
Comprehension \# 4 (Q. No. 26 to 28)
Q. 26 (D)
c $+\mathrm{f}=4$
Q. 27 (A)

Equation of a straight line
through $(2,3)$ and inclined at an angle of $(\pi / 3)$ with y axis $((\pi / 6)$ with x-axis) is
$\frac{x-2}{\cos (\pi / 6)}=\frac{y-3}{\sin (\pi / 6)} \Rightarrow x-\sqrt{3} y=2-3 \sqrt{3}$
Points at a distance $c+f=4$ units from point P are
$(2+4 \cos (\pi / 6), 3+4 \sin (\pi / 6)) \equiv(2+2 \sqrt{3}, 5)$
and $(2-4 \cos (\pi / 6), 3-4 \sin (\pi / 6)) \equiv(2-2 \sqrt{3}, 1)$ only (A) is true out of given options
Q. 28 (C)

Slopes of the lines
$3 x+4 y=5$ is $m_{1}=-\frac{3}{4}$
and $4 x-3 y=15$ is $m_{2}=\frac{4}{3}$
$\because \quad \mathrm{m}_{1} \mathrm{~m}_{2}=-1$
$\therefore \quad$ given lines are perpendicular and $\angle \mathrm{A}=\frac{\pi}{2}$
Now required equation of BC is
$(y-2)=\frac{m \pm \tan (\pi / 4)}{1 \mp m \tan (\pi / 4)}(x-1)$.
where $\mathrm{m}=$ slope of $\mathrm{AB}=-\frac{3}{4}$
$\therefore \quad$ equation of $B C$ is (on solving (1))
$x-7 y+13=0$ and $7 x+y-9=0$
$L_{1} \equiv x-7 y+13=0$
$L_{2} \equiv 7 x+y-9=0$
Let required line be $x+y=a$
which is at $|b-2 a-1|=|5-4-4 \sqrt{3}-1|=4 \sqrt{3}$ units from origin
\therefore required line is $x+y-4 \sqrt{6}=0$ (since intercepts are on positive axes only)
Q. 29
$(\mathrm{A}) \rightarrow(\mathrm{q}, \mathrm{s}),(\mathrm{B}) \rightarrow(\mathrm{r}),(\mathrm{C}) \rightarrow(\mathrm{p}),(\mathrm{D}) \rightarrow(\mathrm{q}, \mathrm{s})$
(A) Slope of such line is ± 1
(B) area of $\triangle \mathrm{OAB}=\frac{1}{2} \times 3 \times 4=6$ sq. units

(C) To represent pair of straight lines

$$
\left|\begin{array}{ccc}
2 & -1 & -3 \\
-1 & -1 & 3 \\
-3 & 3 & c
\end{array}\right|=0 \Rightarrow c=3
$$

(D) Lines represented by given equation are $x+y+a$ $=0$ and $x+y-9 a=0$
\therefore distance between these parallel lines is $=\frac{10 \mathrm{a}}{\sqrt{2}}$
$=5 \sqrt{2} a$
Q. $30 \quad(\mathbf{A}) \rightarrow(\mathbf{R}),(\mathbf{B}) \rightarrow(\mathbf{S}),(\mathbf{C}) \rightarrow(\mathbf{Q})$

B median $2 \mathrm{x}+\mathrm{y}-3=0$
angle bisector of $\mathrm{C} 7 \mathrm{x}-4 \mathrm{y}-1=0$

Let C on the line $7 x-4 y-100$
$\mathrm{C}\left(\lambda, \frac{7 \lambda+1}{4}\right)$
D is mid point of AC lie median

$\mathrm{D}\left(\frac{-3+\lambda}{2}, \frac{1+\frac{7 \lambda-1}{4}}{2}\right)$
$2\left(\frac{-3+\lambda}{2}\right)+\frac{3+7 \lambda}{8}-3=0$
$-48+8 \lambda+3+7 \lambda=0 \Rightarrow \lambda=3$
$C(3,5) \& D(0,3)$
(C) line AC is $y-3=0 \frac{2}{3}(x-0)$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y} 6+9=0(\mathrm{Q})$
(P) will not a side Q (It's given median)
(A) Line $\mathrm{ABA}(-3,1)$ satisfy (R) $4 x+7 y+5=0$
\& (B) Line $B C$ is only (S) $18 x-y-49=0$
Q. 31
$(\mathbf{A}) \rightarrow(\mathbf{Q}),(\mathbf{B}) \rightarrow(\mathbf{P}),(\mathbf{C}) \rightarrow(\mathbf{S}),(\mathbf{D}) \rightarrow(\mathbf{R})$
$D=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ and $D=0$ is condition of concurrency
$D=-\left(a^{3}+b^{3}+c^{3}-3 a b c\right)=(a+b+c)\left(a^{2}+b^{2}+c^{2}-\right.$ $a b-b c-c a)$
(A) if $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ but $\sum \mathrm{a}^{2} \neq \sum \mathrm{ab}$ i.e. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are not all equal, then $\mathrm{D}=0$
hence lines are concurrent $\Rightarrow(\mathrm{Q})$
(B) if $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ and $\sum \mathrm{a}^{2}=\sum \mathrm{ab} \Rightarrow \mathrm{a}=\mathrm{b}=\mathrm{c}$
$\therefore \mathrm{a}=0 ; \mathrm{b}=0 ; \mathrm{c}=0$
\Rightarrow lines becomes identical and of the form $0 \mathrm{x}+0 \mathrm{y}+$ $0=0$
any ordered pair (x, y) will satisfy \Rightarrow complete $x y$ plane $\Rightarrow(\mathrm{P})$
(C) if $\mathrm{a}+\mathrm{b}+\mathrm{c} \neq 0$ and $\sum \mathrm{a}^{2} \neq \sum \mathrm{ab} \Rightarrow \mathrm{a}, \mathrm{b}, \mathrm{c}$ are not all equal $\Rightarrow \mathrm{D} \neq 0$
In this case equations represents set of lines which are neither cncident nor concurrent $\Rightarrow(S)$
(D) if $\mathrm{a}+\mathrm{b}+\mathrm{c} \neq 0$ and $\sum \mathrm{a}^{2}=\sum \mathrm{ab} \Rightarrow \mathrm{a}=\mathrm{b}=\mathrm{c}$ hence lines becomes identical or concident $\Rightarrow(R)$

NUMERICAL VALUE BASED

Q. 1
(2)

Since $(\lambda, \lambda+1)$ lies on $y=x+1$
equation of $\quad A B: 3 x-2 y+6=0 ; B C: x-8 y$
$+2=0 ; \mathrm{AC}: x+3 y-9=0$

Line $y=x+1$ cuts AC at $P\left(\frac{3}{2}, \frac{5}{2}\right)$ cut $B C$ at
$Q\left(\frac{-6}{7}, \frac{1}{7}\right)$. Hence $\lambda \in\left(\frac{-6}{7}, \frac{3}{2}\right)$
Q. $2 \quad$ (0)

Let equation of line is $\ell x+m y+n=0$
given $\left(\frac{a^{3}}{a-1}, \frac{a^{2}-3}{a-1}\right),\left(\frac{b^{3}}{b-1}, \frac{b^{2}-3}{b-1}\right)$
and $\left(\frac{c^{3}}{c-1}, \frac{c^{2}-3}{c-1}\right)$ are collinear
$\left(\frac{t^{3}}{t-1}, \frac{t^{2}-3}{t-1}\right)$ is general point which satisfies line
(i)
$\ell\left(\frac{\mathrm{t}^{3}}{\mathrm{t}-1}\right)+\mathrm{m}\left(\frac{\mathrm{t}^{2}-3}{\mathrm{t}-1}\right)+\mathrm{n}=0$
$\Rightarrow \quad \ell \mathrm{t}^{3}+\mathrm{mt}^{2}+\mathrm{nt}-(3 \mathrm{~m}+\mathrm{n})=0$
$\mathrm{a}+\mathrm{b}+\mathrm{c}=-\frac{\mathrm{m}}{\ell} \Rightarrow \quad \mathrm{ab}+\mathrm{bc}+\mathrm{ac}=\frac{\mathrm{n}}{\ell}$
$\Rightarrow \quad \mathrm{abc}=\frac{3 \mathrm{~m}+\mathrm{n}}{\ell}$
Now \quad LHS $=a b c-(a b+b c+a c)+3(a+b+c)=$ $\frac{(3 m+n)}{\ell}-\frac{n}{\ell}+3\left(\frac{-m}{\ell}\right)=0$
Q. 318

Since C lies on $7 x-4 y-1=0$, therefore let us choose
its coordinates as $\left(\mathrm{h}, \frac{7 \mathrm{~h}-1}{4}\right)$.
The mid point of AC, i.e. $\left(\frac{\mathrm{h}-3}{2}, \frac{7 \mathrm{~h}+3}{8}\right)$ lies on 2 x $+\mathrm{y}-3=0$,
therefore we have $\left(\frac{h-3}{2}\right)+\left(\frac{7 h+3}{8}\right)-3=0$ gives $\mathrm{h}=3$
Hence, coordinates of C are $(3,5)$ and equation of AC is

$y-5=\frac{5-1}{3+3}(x-3)$
i.e., $\quad 2 x-3 y+9=0$

Let slope of $B C=m$. Since lines BC and AC $\left(\right.$ slope $\left.=\frac{2}{3}\right)$ are equally inclined to the line $7 x-4 y$
$-1=0\left(\right.$ slope $\left.=\frac{7}{4}\right)$, therefore we have i.e., $\frac{m-\frac{7}{4}}{1+\frac{7 m}{4}}$
$=\frac{\frac{7}{4}-\frac{2}{3}}{1+\frac{7}{6}}$ (see figure)
i.e., $\frac{4 m-7}{7 m+4}=\frac{1}{2}$ gives $m=18$.
Q. 4 (30)
$9 x^{2}(x+y-5)=4 y^{2}(y+x-5)$
$\Rightarrow \quad(\mathrm{x}+\mathrm{y}-5)(3 \mathrm{x}-2 \mathrm{y})(3 \mathrm{x}+2 \mathrm{y})=0$
lines are $y=\frac{3 x}{2} ; y=\frac{-3 x}{2} ; y=5-x$
$\Rightarrow \quad$ Area $\equiv 30$ sq. units.
Q. 5 (8)
$|x|+|y|=2$ represerts square of side $=2 \sqrt{2}$
Hence area $=8$

Q. $6 \quad$ (3)

$x+y=p$
Let Q divides AB in $\mathrm{k}: 1$
$\frac{\Delta \mathrm{Q}}{\mathrm{QB}}=\frac{\mathrm{k}}{1}$

$\mathrm{Q}\left(\frac{\mathrm{p}}{\mathrm{k}+1}, \frac{\mathrm{pk}}{\mathrm{k}+1}\right), \mathrm{m}_{\mathrm{PQ}}=1$
line $P Q \cdot y-\frac{k p}{k+1}=\left(x-\frac{p}{k+1}\right)$ (If cut y-axis)
then $(x=0$ put $) \Rightarrow y=\frac{(k-1) p}{(k+1)}, p\left(0, \frac{p k-p}{k+1}\right)$
$P Q=B \quad Q=\sqrt{\left(\frac{p}{k+1}\right)^{2}+\left(\frac{p k}{k+1}-\frac{p k}{k+1}+\frac{p}{k+1}\right)^{2}}$
$=\frac{\sqrt{2} p \mathrm{k}}{\mathrm{k}+1}$
Area $\triangle \mathrm{APQ}=\frac{3}{8} \Delta \mathrm{OAB}=\frac{3}{8} \cdot \frac{1}{2} \mathrm{p}^{2}=\frac{3}{16} \mathrm{p}^{2}$
$\Rightarrow \frac{1}{2} \frac{\sqrt{2} p \mathrm{k}}{(\mathrm{k}+1)} \cdot \frac{\sqrt{2} \mathrm{p}}{(\mathrm{k}+1)}=\frac{3}{16} \mathrm{p}^{2}$
$\Rightarrow 16 \mathrm{k}=3(\mathrm{k}+1)^{2} \Rightarrow 3 \mathrm{k}^{2}+6 \mathrm{k}+3=16 \mathrm{k}$
$\Rightarrow \mathrm{k}=3 \mathrm{k}=\frac{1}{3}$ is reject
$(\because \mathrm{P}$ lies on OB only)

Q. 7 (1)

Here BP and CP are angular bisectors. Maximum of $d(P, B C)$ occurs, when P is incentre of $\triangle A B C$.

\therefore Maximum of $\mathrm{d}(\mathrm{P}, \mathrm{BC})=\mathrm{PN}=$ ordinate of incentre $=1$.

Q. 8 (6)

Let $\mathrm{PQ}=\mathrm{r}$
equation of $P Q$

$$
\begin{aligned}
& \frac{x-\sqrt{3}}{\cos \frac{\pi}{6}}=\frac{y-2}{\sin \frac{\pi}{6}}=r \\
& \Rightarrow Q\left(\sqrt{3}+\frac{\sqrt{3} r}{2}, 2+\frac{r}{2}\right)
\end{aligned}
$$

satisfy given line
$\Rightarrow \sqrt{3}\left(\sqrt{3}+\frac{\sqrt{3} r}{2}, 2+\frac{r}{2}\right)+8=0$
$\Rightarrow 3+\frac{3}{2} \mathrm{r}-8-2 \mathrm{r}+8=0 \Rightarrow \frac{\mathrm{r}}{2}=3$
$\Rightarrow \mathrm{r}=6$

Q. 9

(19)

Equation of family of curves passing through intersection of $\mathrm{C}_{1} \& \mathrm{C}_{2}$ is
$-\lambda x^{2}+4 y^{2}-2 x y-9 x+3+\mu\left(2 x^{2}+3 y^{2}-4 x y+3 x\right.$ $-1)=0$
It will give the joint equation of pair of lines passing through origin,
if coefficient of $\mathrm{x}=0$ \& Constant $=0$
$\Rightarrow \quad \mu=3$
put $\mu=3$ in equation (i), we get
$-\lambda x^{2}+4 y^{2}-2 x y+6 x^{2}+9 y^{2}-12 x y=0$
It will subtend 90° at origin if coeff. of $x^{2}+$ coeff. of $\mathrm{y}^{2}=0 \Rightarrow \lambda=-19$
Q. 10 (32)

So C will be $(5, \mathrm{a}) \leftarrow \mathrm{D}$ is $(-3$, b) Now Axa of two parts divided by diameter will be same. get a and b and get $A x a$.

Q. 11 (52)

Point be (x, y) but it lies on $\mathrm{y}=\mathrm{x}+2$ So,
($\mathrm{x}, \mathrm{x}+2$)
$F(x)=\left[\frac{3 x-4(x+2)+8}{\sqrt{3^{2}+4^{2}}}\right]^{2}+\left[\frac{3 x-(x+2)-1}{\sqrt{3^{2}+1^{2}}}\right]^{2}$
$=\frac{2 x^{2}+5\left[4 x^{2}-12 x+9\right]}{50}$
$=\frac{22\left[\left(x-\frac{30}{22}\right)^{2}-\frac{900}{484}\right]+45}{50}$
$\mathrm{F}(\mathrm{x})$ is minimum at $\mathrm{x}=\frac{15}{11}$. So point is $\left(\frac{15}{11}, \frac{37}{11}\right)$ $=(\mathrm{a}, \mathrm{b})$
$11(a+b)=52$.
Q. 12 (2)

$$
\begin{aligned}
& x^{2}+2 \sqrt{2} x y+2 y^{2}+4 x+4 \sqrt{2} y+1=0 \\
& (x+\sqrt{2} y+p)(x+\sqrt{2} y+q)=0 \\
& p+q=4 \\
& p q=1
\end{aligned}
$$

Destance between 11 lines is $\left|\frac{p-q}{\sqrt{3}}\right|$

$$
-\frac{\sqrt{(p+q)^{2}-4 p q}}{\sqrt{3}}=\frac{\sqrt{16-4}}{\sqrt{3}}=2
$$

Q. 13 (2)

Given lines are $\mathrm{ax}+\mathrm{y}+1=0$ \qquad

$$
\begin{align*}
& x+b y=0 \tag{ii}\\
& a x+b y=1
\end{align*}
$$

Joint equation of (i) and (ii) is
$(a x+y+1)(x+b y)=0$
$\Rightarrow a x^{2}+b y^{2}+(a b+1) x y+x+b y=0$
Making (iv) homogeneous with the help of equation (i) we have
$a x^{2}+b y^{2}+(a b+1) x y+x(a x+b y)+b y(a x+b y)=0$
since angle between these two lines is 90°
$\therefore \quad$ Coefficient of $\mathrm{x}^{2}+$ Coefficient of $\mathrm{y}^{2}=0$
$2 \mathrm{a}+\mathrm{b}+\mathrm{b}^{2}=0$ is the required condition.

Q. 14 (2)

For collinearity of 3 points $\left|\begin{array}{ccc}-2 & 0 & 1 \\ -1 & \frac{1}{\sqrt{3}} & 1 \\ \cos 4 \theta & \sin 4 \theta & 1\end{array}\right|=0$

$$
\Rightarrow \sqrt{3} \sin 4 \theta-\cos 4 \theta=2 \Rightarrow \sin \left(4 \theta-\frac{\pi}{6}\right)=1
$$

$$
\Rightarrow 4 \theta-\frac{\pi}{6}=\frac{\pi}{2}+2 \mathrm{k} \pi
$$

$$
\theta=\frac{\pi}{6}+\frac{k \pi}{2} \quad \Rightarrow \frac{\pi}{6}, \frac{2 \pi}{3} .
$$

Q. 15 (2)

$\mathrm{x}^{2}\left(\sec ^{2} \theta-\sin ^{2} \theta\right)-2 \mathrm{xy} \tan \theta+\mathrm{y}^{2} \sin ^{2} \theta=0$
$\Rightarrow \quad\left|\mathrm{m}_{1}-\mathrm{m}_{2}\right|=\sqrt{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)^{2}-4 \mathrm{~m}_{1} \mathrm{~m}_{2}}$

$$
\sqrt{\left(\frac{2 \tan \theta}{\sin ^{2} \theta}\right)^{2}-4\left(\frac{\sec ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta}\right)}=2
$$

KVPY

PREVIOUS YEAR'S
Q. 1 (C)

$\frac{1}{2}\left|\begin{array}{ccc}1 & x & y \\ 1 & 0 & 12 \\ 1 & 4 & 0\end{array}\right|= \pm 18$
$1(-48)-x(-12)+y(4)= \pm 36$
$12 x+4 y-48= \pm 36$
$3 x+y-12= \pm 9$
$(3 x+y-12)^{2}=81$
Q. 2
(A)

Slope of $\mathrm{AB}=\frac{4}{2}=2$
slope of $\mathrm{BC}=-\frac{1}{2}$
$\ell(\mathrm{AB})=\sqrt{4+16}=2 \sqrt{5}$
distance between $2 \mathrm{x}-\mathrm{y}+4=0 \& 2 \mathrm{x}-\mathrm{y}=0 \Rightarrow \frac{4}{\sqrt{5}}$

Area $=2 \sqrt{5} \cdot \frac{8}{\sqrt{5}}=16$
Q. 3

(x, y)

equation of OP
$y=x \tan \theta$
point Q is $(\mathrm{b} \cot \theta, \mathrm{b})$
\therefore point P is $\mathrm{y}=\mathrm{b} \pm \sin \theta$
$\mathrm{r} \sin \theta=\mathrm{b} \pm \mathrm{d} \sin \theta$
$(\mathrm{r} \mp \mathrm{d}) \sin \theta=\mathrm{b}$
Q. 6
(A)

$$
\begin{aligned}
& \frac{\Delta(\mathrm{AOB})}{\Delta(\mathrm{APB})}=2+\sqrt{5} \\
& \frac{\frac{1}{2} \cdot 1 \cdot \sin \theta}{\frac{1}{2}\left|\begin{array}{ccc}
1 & 0 & 1 \\
\cos \frac{\theta}{2} & \sin \frac{\theta}{2} & 1 \\
\cos \theta & \sin \theta & 1
\end{array}\right|}=2+\sqrt{5} \text { on solving } \\
& \frac{\cos \frac{\theta}{2}}{1-\cos \frac{\theta}{2}}=2+\sqrt{5} \Rightarrow \cos \frac{\theta}{2}=\frac{1+\sqrt{5}}{4}
\end{aligned}
$$

So $\cos \theta=\frac{\sqrt{5}-1}{4}$
If $\theta \rightarrow 2 \theta$

$$
\frac{\Delta \mathrm{AOB}}{\Delta \mathrm{APB}}=\frac{\cos \theta}{1-\cos \theta}=\frac{1}{\sqrt{5}}
$$

Q. 7 (C)
$\mathrm{AB}=\sqrt{\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right)^{2}+\left(\mathrm{a}_{2}-\mathrm{b}_{2}\right)^{2}}$
Square + Square $=\sqrt{65}$ possible when

$$
\begin{aligned}
& =64+1 \\
& \sqrt{74}=49+25 \\
& \sqrt{97}=81+16
\end{aligned}
$$

But $\sqrt{83}$ not possible
Q. 8
(D)

Case (i) :

If $\angle \mathrm{B}=\angle \mathrm{C}$
locus of A is \perp bisector of BC
So it is straight line

Case (ii) :

If $\angle \mathrm{A}=\angle \mathrm{C}$
BC fixed $\mathrm{B}(\mathrm{a}, 0), \mathrm{C}(0, \mathrm{a})$
$\mathrm{BC}=\mathrm{AB}$
So, $(x-a)^{2}+y^{2}+a^{2}$
Circle
Case (iii) :
$\angle A=\angle B$
$\mathrm{AC}=\mathrm{BC}$
$\sqrt{\mathrm{h}^{2}+(\mathrm{k}-\mathrm{a})^{2}}=\sqrt{2 \mathrm{a}^{2}}$
$x^{2}+(y-a)^{2}=2 a^{2}$
also a circle
So union of two circle and a line.
Q. 9
(A)

$\mathrm{PQ}_{3}=\mathrm{Q}_{3} \mathrm{R}\left(\therefore \mathrm{QQ}_{3}\right.$ is median $)$
$\mathrm{PQ}_{3}=\frac{1}{2} \mathrm{PR}$
$\mathrm{PQ}_{2}: \mathrm{Q}_{2} \mathrm{R}=\mathrm{r}: \mathrm{p}$ (By property of angle bisector)
$\mathrm{PQ}_{2}=\left(\frac{\mathrm{r}}{\mathrm{r}+\mathrm{P}}\right) \mathrm{PR}$
But $\mathrm{r}<\mathrm{P}$ (Given)
$\mathrm{PQ}_{2}<\frac{1}{2} \mathrm{PR}$
Comparison between Altitude and angle bisector
$\Rightarrow \angle \mathrm{QPQ}_{2}+\angle \mathrm{PQ}_{2} \mathrm{Q}+\angle \mathrm{PQQ}_{2}=\angle \mathrm{RQQ}_{2}+\angle \mathrm{QQ}_{2} \mathrm{R}$
$+\angle \mathrm{QRQ}_{2}$
$\therefore \angle \mathrm{PQQ}_{2}=\angle \mathrm{RQQ}_{2}\{$ Since angle bisector $\}$
$\angle \mathrm{QPQ}_{2}+\angle \mathrm{PQ}_{2} \mathrm{Q}=\angle \mathrm{QQ}_{2} \mathrm{R}+\angle \mathrm{QRQ}_{2}$
$\therefore \mathrm{PQ}<\mathrm{QR}$ then $\angle \mathrm{QPQ}_{2}>\angle \mathrm{QRQ}_{2}$
Hence $\angle \mathrm{QQ}_{2} \mathrm{P} \angle \mathrm{QQ}_{2} \mathrm{R}$
But $\angle \mathrm{QQ}_{2} \mathrm{P}+\angle \mathrm{QQ}_{2} \mathrm{R}=180^{\circ}$
Hence $\angle \mathrm{QQ}_{2} \mathrm{P}<90^{\circ} \& \angle \mathrm{QQ}_{2} \mathrm{R}>90^{\circ}$
\Rightarrow Foot from Q to side PR lies inside $\triangle \mathrm{PQQ}_{2}$
$\Rightarrow \mathrm{PQ}_{1}<\mathrm{PQ}_{2}<\mathrm{PQ}_{3}$
Q. 10 (A)
$(a-8)^{2}-(b-7)^{2}=5$
$(a-b-1)(a+b-15)=5$
$\mathrm{I}_{1} \quad \mathrm{I}_{2}$

Four cases
I_{1}
I_{2}
$5 \quad 1$
1 5
$-5 \quad-1$
$-1 \quad-5$
Case - 1
$\mathrm{a}-\mathrm{b}-1=5 \& \mathrm{a}+\mathrm{b}-15=1$
$\Rightarrow \mathrm{a}=11, \mathrm{~b}=5$
Case-2
$\mathrm{a}-\mathrm{b}-1=-5 \& \mathrm{a}+\mathrm{b}-15=-1$
$\Rightarrow \mathrm{a}=11, \mathrm{~b}=9$
Case-3
$\mathrm{a}-\mathrm{b}-1=1 \& \mathrm{a}+\mathrm{b}-15=5$
$\Rightarrow \mathrm{a}=11, \mathrm{~b}=9$

Case-4
$\mathrm{a}-\mathrm{b}-1=-1 \& \mathrm{a}+\mathrm{b}-15=-5$
$\Rightarrow \mathrm{a}=5, \mathrm{~b}=5$

Perimeter $=4+4+6+6=20$
Q. 11 (A)

Equation of line passing throug $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is
$\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\Rightarrow\left(x_{2}-x_{1}\right) y+\left(y_{1}-y_{2}\right) x+y_{1}\left(x_{1}-x_{2}\right)+x_{1}\left(y_{2}-y_{1}\right)=0$
$\Rightarrow a x+b y+c=0$ where $a, b, c \in I$
$a=x_{2}-x_{1}, b=y_{1}-y_{2}, c=y_{1}\left(x_{1}-x_{2}\right)+x_{1}\left(y_{2}-y_{1}\right)$
square of distance of $(0,0)$ from
$\left(\frac{\mathrm{c}}{\sqrt{\mathrm{x}^{2}+\mathrm{b}^{2}}}\right)^{2}=\frac{\mathrm{c}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}=$ rational
Case-1: If n is not perfect square
And square of radius $=n^{2}\left(1+\left(1-\frac{1}{\sqrt{n}}\right)^{2}\right)=$ irrational
$\Rightarrow r^{2} \neq \frac{c^{2}}{a^{2}+b^{2}} \mathrm{~s}$
$\Rightarrow a x+b y+x=0$ never be tangent to given circle
$\Rightarrow \lim _{\mathrm{n} \rightarrow \infty} \mathrm{P}_{\mathrm{n}}=0$
Case-2 : If n is perfect square
In this case number of tangents passing through two points from given set are few, but total number of lines are in much quantity when n approaches to infinite.
$\Rightarrow \lim _{\mathrm{n} \rightarrow \infty} \mathrm{P}_{\mathrm{n}}=0$

Q. 12 (C)

Area $=\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2} \sin \theta$ is maximum when $\theta=90^{\circ}$
\Rightarrow Parallelogram is a rhombus
\Rightarrow perimeter $=4 \sqrt{\left(\frac{\mathrm{~d}_{1}}{2}\right)^{2}+\left(\frac{\mathrm{d}_{2}}{2}\right)^{2}}=4 \sqrt{29} \in(21$,
22]
Q. 13 (A)

Required ways $=$ total words - words formed with vowels only - words formed with consonants only $=26^{4}-5^{4}-21^{4}=456976-194481-625=261870$
Q. 14 (A)

$$
\mathrm{AD}=\frac{2(\text { Area of } \mathrm{ABC})}{\mathrm{BC}}=\frac{20 \times 15}{25}=12
$$

Note that AFDE is a rectangle.
Hence $\mathrm{AD}=\mathrm{EF}$.

Q. 15 (C)

Note : Area of $\triangle \mathrm{APN}=$ Area of $\triangle \mathrm{PDN}$
Area of $\triangle \mathrm{APK}=$ Area of $\triangle \mathrm{PBK}$
Area $\triangle \mathrm{PCL}=$ Area of $\triangle \mathrm{PBL}$
Area of $\triangle \mathrm{PCM}=$ Area of $\triangle \mathrm{PDM}$
Hence. Area (PKAN) + Area (PLCM)
$=$ Area (PMDN) + Area (PLBK)
Hence Area $($ PLCM $)=36+41-25=52$

Q. 16 (C)

In $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& \frac{15}{\sin 2 \theta}=\frac{9}{\sin \theta}=\frac{B C}{\sin 3 \theta} \\
& \frac{15}{\sin 2 \theta}=\frac{9}{\sin \theta} \Rightarrow \cos \theta \frac{5}{6} \\
& \frac{9}{\sin \theta}=\frac{\mathrm{BC}}{\sin 3 \theta} \\
& \Rightarrow \mathrm{BC}=9\left[3-4 \sin ^{2} \theta\right] \\
& =9\left[4 \cos ^{2} \theta-1\right] \\
& =9\left[4 \times \frac{25}{36}-1\right]=16
\end{aligned}
$$

$\therefore \mathrm{BD}=\frac{5}{8} \mathrm{BC}=10$
$\frac{\mathrm{h}}{\mathrm{a}}+\frac{\mathrm{k}}{\mathrm{b}}=1$
$\frac{\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}}{2}=\frac{1}{4}$
$\therefore \frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}=\frac{1}{2}$
\therefore Line passes through fixed point $(2,2)$ (from (1) and (2))
Q. 4
(2)

$P \equiv\left(x_{1}, m x_{1}\right)$
$Q \equiv\left(x_{2}, m x_{2}\right)$
$A_{1}=\frac{1}{2}\left|\begin{array}{ccc}3 & 4 & 1 \\ 2 & 0 & 1 \\ -1 & 1 & 1\end{array}\right|=\frac{13}{2}$
$\mathrm{A}_{2}=\frac{1}{2}\left|\begin{array}{ccc}\mathrm{x}_{1} & \mathrm{mx}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{mx}_{2} & 1 \\ 2 & 0 & 1\end{array}\right|$
$\mathrm{A}_{2}=\frac{1}{2}\left|2\left(\mathrm{mx}_{1}-\mathrm{mx}_{2}\right)\right|=\mathrm{m}\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|$
$A_{1}=3 A_{2} \Rightarrow \frac{13}{2}=3 m\left|x_{1}-x_{2}\right|$
$\Rightarrow\left|x_{1}-x_{2}\right|=\frac{16}{6 m}$
$A C: x+3 y=2$
$B C: y=4 x-8$
$P: x+3 y=2 \& y=m x \Rightarrow x 1=\frac{2}{1+3 m}$
$Q: y=4 x-8 \& y=m x \Rightarrow x 2=\frac{8}{4-m}$
$\left|x_{1}-x_{2}\right|=\left|\frac{2}{1+3 m}-\frac{8}{4-m}\right|$
$=\left|\frac{-26 m}{(1+3 m)(4-m)}\right|=\frac{26 m}{(3 m+1)|m-4|}$
$=\frac{26 m}{(3 m+1)(4-m)}$

$$
\begin{aligned}
& \left|x_{1}-x_{2}\right|=\frac{13}{6 m} \\
& \frac{26 m}{(3 m+1)(4-m)}=\frac{13}{6 m} \\
& \Rightarrow 12 m 2=-(3 m+1)(m-4) \\
& \Rightarrow 12 m 2=-(3 m 2-11 m-4) \\
& \Rightarrow 15 m 2-11 m-4=0 \\
& \Rightarrow 15 m 2-15 m+4 m-4=0 \\
& \Rightarrow(15 m+4)(m-1)=0 \\
& \Rightarrow m=1
\end{aligned}
$$

Q. 5 (2)

$(4,-2)$
Equation of perpendicular bisector of $P R$ is $y=x$ Solving with $2 x-y+2=0$ will give (-2, 2)
Q. $6 \quad$ (904)

$$
\begin{equation*}
z=6 x y+y^{2}=y(6 x+y) \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
3 x+4 y \leq 100 \tag{i}
\end{equation*}
$$

$4 x+3 y \leq 75$
$x \geq 0$
$y \geq 0$
$x \leq \frac{75-3 y}{4}$
$Z=y(6 x+y)$
$Z \leq y\left(6 \cdot\left(\frac{75-3 y}{4}\right)+y\right)$
$Z \leq \frac{1}{2}\left(225 y-7 y^{2}\right) \leq \frac{(225)^{2}}{2 \times 4 \times 7}$

$$
\begin{aligned}
& =\frac{50625}{56} \\
& \approx 904.0178 \\
& \approx 904.02
\end{aligned}
$$

It will be attained at $y=\frac{225}{14}$

Q. 7 (144)

Since orthocentre and circumcentre both lies on y axis
\Rightarrow Centroid also lies on y -axis
$\Rightarrow \Sigma \cos \alpha=0$
$\cos \alpha+\cos \beta+\cos \gamma=0$
$\Rightarrow \cos ^{3} \alpha+\cos ^{3} \beta+\cos ^{3} \gamma=3 \cos \alpha \cos \beta \cos \gamma$
$\therefore \frac{\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma}{\cos \alpha \cos \beta \cos \gamma}$
$=\frac{4\left(\cos ^{3} \alpha+\cos ^{3} \beta+\cos ^{3} \gamma\right)-3(\cos \alpha+\cos \beta+\cos \gamma)}{\cos \alpha \cos \beta \cos \gamma}$
$=12$
Q. 11
Q. 12
Q. 13 (2)
Q. 14 (9)
Q. 15 (6)
Q. 16 ((1250)
Q. 17 (1)
Q. 18 (3)
Q. 19 (4)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1
(B)

Let slope of line $\mathrm{L}=\mathrm{m}$
$\therefore\left|\frac{m-(-\sqrt{3})}{1+m(-\sqrt{3})}\right|=\tan 60^{\circ}=\sqrt{3} \Rightarrow\left|\frac{m+\sqrt{3}}{1-\sqrt{3} m}\right|=\sqrt{3}$
taking positive sign, $m+\sqrt{3}=\sqrt{3}-3 m$
$\Rightarrow \mathrm{m}=0$
taking negative sign $m+\sqrt{3}+\sqrt{3}-3 m=0$
$\Rightarrow \mathrm{m}=\sqrt{3}$
As L cuts x -axis
$\Rightarrow \mathrm{m}=\sqrt{3}$
so L is $y+2=\sqrt{3}(x-3)$
Q. 2 (A) or (C) or Bonus

As $\mathrm{a}>\mathrm{b}>\mathrm{c}>0$
$\Rightarrow \mathrm{a}-\mathrm{c}>0$ and $\mathrm{b}>0$
$\Rightarrow a-c>0$ and $b>0$
$\Rightarrow \mathrm{a}+\mathrm{b}-\mathrm{c}>0$
\Rightarrow option (A) is correct
Further $\mathrm{a}>\mathrm{b}$ and $\mathrm{c}>0$
$\Rightarrow a-b>0$
and $c>0$
$\Rightarrow a-b>0$ and $c>0$
$\Rightarrow \mathrm{a}-\mathrm{b}+\mathrm{c}>0 \quad \Rightarrow$ option (c) is
correct
Aliter
$(a-b) x+(b-a) y=0 \quad \Rightarrow x=y$
\Rightarrow Point of intersection $\left(\frac{-c}{a+b}, \frac{-c}{a+b}\right)$
Now $\sqrt{\left(1+\frac{c}{a+b}\right)^{2}+\left(1+\frac{c}{a+b}\right)^{2}}<2 \sqrt{2}$
$\Rightarrow \sqrt{2}\left(\frac{a+b+c}{a+b}\right)<2 \sqrt{2} \Rightarrow a+b-c>0$

Q. 3 (6)

let $\mathrm{p}(\mathrm{h}, \mathrm{k})$
$2 \leq\left|\frac{h-k}{\sqrt{2}}\right|+\left|\frac{h+k}{\sqrt{2}}\right| \leq 4$
$\Rightarrow 2 \sqrt{2} \leq|h-k|+|h+k| \leq 4 \sqrt{2}$
if $h \geq k$
$\Rightarrow 2 \sqrt{2} \leq x-y+x+y \leq 4 \sqrt{2}$ or $\sqrt{2} \leq x \leq 2 \sqrt{2}$

similarly when $\mathrm{k}>\mathrm{h}$
we have $\sqrt{2} \leq y \leq 2 \sqrt{2}$
The required area $=(2 \sqrt{2})^{2}-(\sqrt{2})^{2}=6$.

Q. 4

(B,C,D)
(A) lines are parallel but not coincide (depends on λ and μ)
(B) lines are not parallel.
(C) lines coincide
(D) lines are parallel

Question Stem for Question Nos. 5 and 6

 Question StemConsider the line L_{1} and L_{2} defined by
$L_{1}: x \sqrt{2}+y-1=0$ and $L_{2}: x \sqrt{2}-y+1=0$
For a fixed constant λ, let C be the locus of a point P such that the product of the distance of P from L_{1} and the distance P form L_{2} is λ^{2}. The line $y=2 x+1$ meets C at two points R and S , where teh distance between R and S is $\sqrt{270}$.
Let the perpendicular bisector of RS meet C at two distinct point R^{\prime} and S^{\prime}. Let D be the square of the distance between R^{\prime} and S^{\prime}.
Q. 5
(9.00)
$P(x, y)\left|\frac{\sqrt{2} x+y-1}{\sqrt{3}}\right|\left|\frac{\sqrt{2} x-y+1}{\sqrt{3}}\right|=\lambda^{2}$
$\left|\frac{2 x^{2}-(y-1)^{2}}{\sqrt{3}}\right|=\lambda^{2}, C:\left|2 x^{2}-(y-1)^{2}\right|=3 \lambda^{2}$
line $y=2 x+1, R S=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}, R\left(x_{1}\right.$, $\left.y_{1}\right)$ and $S\left(x_{2}, y_{2}\right)$
$\mathrm{y}_{1}=2 \mathrm{x}_{1}+1$ and $\mathrm{y}_{2}=2 \mathrm{x}_{2}+1 \Rightarrow\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)=2\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)$
RS $=\sqrt{5\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}}=\sqrt{5}\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|$
Solve curve C and line $y=2 x+1$ we get
$\left|2 x^{2}-(2 x)^{2}\right|=3 \lambda^{2} \Rightarrow x^{2}=\frac{3 \lambda^{2}}{2}$
$R S=\sqrt{5}\left|\frac{2 \sqrt{3} \lambda}{\sqrt{2}}\right|=\sqrt{30} \lambda=\sqrt{270} \Rightarrow 30 \lambda^{2}=270 \Rightarrow \lambda^{2}=9$
(77.14)

\perp bisectior pf RS
$\mathrm{T} \equiv\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)$
Here $\mathrm{x}_{1}+\mathrm{x}_{2}=0$
$\mathrm{T}=(0,1)$
Equation of
$R^{\prime} S^{\prime}:(y-1)=-\frac{1}{2}(x-0) \Rightarrow x+2 y=2$
$R^{\prime}\left(a_{1}, b_{1}\right) S^{\prime}\left(a_{2}, b_{2}\right)$
$D=\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}=5\left(b_{1}-b_{2}\right)^{2}$
solve $x+2 y=2$ and $\left|2 x^{2}-(y-1)^{2}\right|=3 \lambda^{2}$
$\left|8(y-1)^{2}-(y-1)^{2}\right|=3 \lambda^{2} \Rightarrow(y-1)^{2}=\left(\frac{\sqrt{3} \lambda}{\sqrt{7}}\right)^{2}$
$y-1= \pm \frac{\sqrt{3} \lambda}{\sqrt{7}} \Rightarrow b_{1}=1+\frac{\sqrt{3} \lambda}{\sqrt{7}}, b_{2}=1-\frac{\sqrt{3} \lambda}{\sqrt{17}}$
$\mathrm{D}=5\left(\frac{2 \sqrt{3} \lambda}{\sqrt{7}}\right)^{2}=\frac{5 \times 4 \times 3 \lambda^{2}}{7}=\frac{5 \times 4 \times 27}{7}=77.14$

Circle

EXERCISES

ELEMENTRY

Q. 1 (1)

Required equation is $(x-a)^{2}+(y-a)^{2}=a^{2}$
$\Rightarrow x^{2}+y^{2}-2 a x-2 a y+a^{2}=0$.
Q. 2 (1)

The circle is $x^{2}+y^{2}-\frac{1}{2} x=0$.
Centre $(-\mathrm{g},-\mathrm{f})=\left(\frac{1}{4}, 0\right)$
and $R=\sqrt{\frac{1}{16}+0-0}=\frac{1}{4}$
Q. 3 (2)

Let the centre of the required circle be ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and the centre of given circle is $(1,2)$. Since radii of both circles are same, therefore, point of contact $(5,5)$ is the mid point of the line joining the centres of both circles. Hence $x_{1}=9$ and $y_{1}=8$. Hence the required equation is $(x-9)^{2}+(y-8)^{2}=25$
$\Rightarrow x^{2}+y^{2}-18 x-16 y+120=0$.
Trick : The point $(5,5)$ must satisfy the required circle. Hence the required equation is given by (2).
Q. 4 (4)

Let the centre be (h, k), then radius $=h$
Also $\mathrm{CC}_{1}=\mathrm{R}_{1}+\mathrm{R}_{2}$
or $\sqrt{(h-3)^{2}+(k-3)^{2}}=h+\sqrt{9+9-14}$
$\Rightarrow(\mathrm{h}-3)^{2}+(\mathrm{k}-3)^{2}=\mathrm{h}^{2}+4+4 \mathrm{~h}$
$\Rightarrow \mathrm{k}^{2}-10 \mathrm{~h}-6 \mathrm{k}+14=0$ or $\mathrm{y}^{2}-10 \mathrm{x}-6 \mathrm{y}+14=0$

Q. 5 (3)

The other end is $(t, 3-t)$
So the equation of the variable circle is
$(x-1)(x-t)+(y-1)(y-3+t)=0$
or $x^{2}+y^{2}-(1+t) x-(4-t) y+3=0$
\therefore The centre (α, β) is given by
$\alpha=\frac{1+\mathrm{t}}{2}, \beta=\frac{4-\mathrm{t}}{2}$
$\Rightarrow 2 \alpha+2 \beta=5$
Hence, the locus is $2 \mathrm{x}+2 \mathrm{y}=5$.
Q. 6 (4)

Here the centre of circle $(3,-1)$ must lie on the line
$x+2 b y+7=0$.
Therefore, $3-2 b+7=0 \Rightarrow b=5$.
Q. 7 (4)

Any line through $(0,0)$ be $\mathrm{y}-\mathrm{mx}=0$ and it is a tangent to circle $(x-7)^{2}+(y+1)^{2}=25$, if
$\frac{-1-7 \mathrm{~m}}{\sqrt{1+\mathrm{m}^{2}}}=5 \Rightarrow \mathrm{~m}=\frac{3}{4},-\frac{4}{3}$
Therefore, the product of both the slopes is -1 .

$$
\text { i.e., } \frac{3}{4} \times-\frac{4}{3}=-1 \text {. }
$$

Hence the angle between the two tangents is $\frac{\pi}{2}$.
Q. 8 (3)

Equation of pair of tangents is given by $\mathrm{SS}_{1}=\mathrm{T}^{2}$. Here

$$
\begin{align*}
& \mathrm{S}=\mathrm{x}^{2}+\mathrm{y}^{2}+20(\mathrm{x}+\mathrm{y})+20, \mathrm{~S}_{1}=20 \\
& \mathrm{~T}=10(\mathrm{x}+\mathrm{y})+20 \\
& \quad \therefore \mathrm{SS}_{1}=\mathrm{T}^{2} \\
& \Rightarrow 20\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+20(\mathrm{x}+\mathrm{y})+20\right\}=10^{2}(\mathrm{x}+\mathrm{y}+2)^{2} \\
& \Rightarrow 4 \mathrm{x}^{2}+4 \mathrm{y}^{2}+10 \mathrm{xy}=0 \Rightarrow 2 \mathrm{x}^{2}+2 \mathrm{y}^{2}+5 \mathrm{xy}=0 . \tag{2}
\end{align*}
$$

Accordingly, $\frac{3(2)-4(4)-\lambda}{\sqrt{3^{2}+4^{2}}}= \pm \sqrt{2^{2}+4^{2}+5}$

$$
\Rightarrow-10-\lambda= \pm 25 \Rightarrow \lambda=-35,15 .
$$

Q. 10 (1)

Let $S_{1} \equiv x^{2}+y^{2}-2 x+6 y+6=0$
and $S_{2} \equiv x^{2}+y^{2}-5 x+6 y+15=0$,
then common tangent is $S_{1}-S_{2}=0$
$\Rightarrow 3 x=9 \Rightarrow x=3$.
Q. 11 (2)

Since normal passes through the centre of the circle.
\therefore The required circle is the circle with ends of diameter as $(3,4)$ and $(-1,-2)$.
It's equation is $(x-3)(x+1)+(y-4)(y+2)=0$
$\Rightarrow x^{2}+y^{2}-2 x-2 y-11=0$.
Q. 12 (3) Length of each tangent
$L^{2}=(4)^{2}+(5)^{2}-(4 \times 4)-(2 \times 5)-11$
$\mathrm{L}=2$
$r=\sqrt{2^{2}+1^{2}-(-11)}$
r $=4$
Area $=\mathrm{L}+\mathrm{r}=8$ sq. units.

Q. 13 (2)

Length of tangents is same i.e., $\sqrt{\mathrm{S}_{1}}=\sqrt{\mathrm{S}_{2}}=\sqrt{\mathrm{S}_{3}}$.

We get the point from where tangent is drawn, by solving the 3 equations for x and y.
i.e., $\mathrm{x}^{2}+\mathrm{y}^{2}=1$,
$x^{2}+y^{2}+8 x+15=0$ and $x^{2}+y^{2}+10 y+24=0$
or $8 x+16=0$ and $10 y+25=0$
$\Rightarrow \mathrm{x}=-2$ and $\mathrm{y}=-\frac{5}{2}$

Hence the point is $\left(-2,-\frac{5}{2}\right)$.

Q. 14 (2)

Suppose ($\mathrm{x}_{1}, \mathrm{y}_{1}$) be any point on first circle from which tangent is to be drawn, then
$\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}+2 \mathrm{gx}_{1}+2 \mathrm{fy}_{1}+\mathrm{c}_{1}=0$
and also length of tangent
$=\sqrt{S_{2}}=\sqrt{x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}+c}$
From (i), we get (ii) as $\sqrt{\mathrm{c}-\mathrm{c}_{1}}$.

Q. 15 (1)

$S_{1}=x^{2}+y^{2}+4 x+1=0$
$S_{2}=x^{2}+y^{2}+6 x+2 y+3=0$
Common chord $\equiv \mathrm{S}_{1}-\mathrm{S}_{2}=0 \Rightarrow 2 \mathrm{x}+2 \mathrm{y}+2=0$

$$
\Rightarrow x+y+1=0
$$

Q. 16 (3)

Obviously $\mathrm{BC}=\sqrt{2}$

Hence, $\pm \frac{0-2.0-\mathrm{k}}{\sqrt{1^{2}+(-2)^{2}}}=\sqrt{2} \Rightarrow \mathrm{k}= \pm \sqrt{10}$

Q. 17

(1)

We know that the equation of common chord is $S_{1}-S_{2}=0$, where S_{1} and S_{2} are the equations of given circles, therefore
$(x-a)^{2}+(y-b)^{2}+c^{2}-(x-b)^{2}-(y-a)^{2}-c^{2}=0$
$\Rightarrow 2 \mathrm{bx}-2 \mathrm{ax}+2 \mathrm{ay}-2 \mathrm{by}=0$
$\Rightarrow 2(b-a) x-2(b-a) y=0 \Rightarrow x-y=0$

Q. 18 (3)

Equation of common chord is $a x-b y=0$

Now length of common chord
$=2 \sqrt{\mathrm{r}_{1}^{2}-\mathrm{p}_{1}^{2}}=2 \sqrt{\mathrm{r}_{2}^{2}-\mathrm{p}_{2}^{2}}$
where r_{1} and r_{2} are radii of given circles and p_{1}, p_{2} are the perpendicular distances from centres of circles to common chords.
Hence required length

$$
=2 \sqrt{a^{2}-\frac{a^{4}}{a^{2}+b^{2}}}=\frac{2 \mathrm{ab}}{\sqrt{a^{2}+b^{2}}}
$$

Q. 19 (4)

Equation of common chord is $S_{1}-S_{2}=0$
$\Rightarrow 2 \mathrm{x}-2 \mathrm{y}=0$ i.e., $\mathrm{x}-\mathrm{y}=0$
\because Length of perpencicular drawn from C_{1}
to $\mathrm{x}-\mathrm{y}=0$ is $\frac{1}{\sqrt{2}}$
\therefore Length of common chord $=2 \sqrt{\frac{19}{2}-\frac{1}{2}}=6$

Q. 20 (3)

Here the intersection point of chord and circle can be found by solving the equation of circle with the equation of given line, therefore, the points of intersection are $(-4,-3)$ and $\left(\frac{24}{5}, \frac{7}{5}\right)$. Hence the
midpoint is $\left(\frac{-4+\frac{24}{5}}{2}, \frac{-3+\frac{7}{5}}{2}\right)=\left(\frac{2}{5},-\frac{4}{5}\right)$.
Q. 21 (4)

Let the mid point of chord be (h, k), then its equation is $\mathrm{T}=\mathrm{S}_{1}$
i.e., $h x+k y-(x+h)-3(y+k)-10$
$=h^{2}+k^{2}-2 h-6 k-10$
Since it passes through the origin, therefore
$h^{2}+k^{2}-h-3 k=0$
or locus is $x^{2}+y^{2}-x-3 y=0$.
Q. 22 (1)
$\mathrm{SS}_{1}=\mathrm{T}^{2}$
$\Rightarrow\left(x^{2}+y^{2}-2 x+4 y+3\right)(36+25-12 x-20 y+3)$
$=(6 x-5 y-x-6+2(y-5)+3)^{2}$
$\Rightarrow 7 x^{2}+23 y^{2}+30 x y+66 x+50 y-73=0$.
Q. 23 (1)
$\mathrm{C}_{1}(1,2), \mathrm{C}_{2}(0,4), \mathrm{R}_{1}=\sqrt{5}, \mathrm{R}_{2}=2 \sqrt{5}$
$\mathrm{C}_{1} \mathrm{C}_{2}=\sqrt{5}$ and $\mathrm{C}_{1} \mathrm{C}_{2}=\left|\mathrm{R}_{2}-\mathrm{R}_{1}\right|$
Hence circles touch internally.

Q. 24 (3)

Equation of radical axis, $S_{1}-S_{2}=0$
i.e.,

$$
\begin{aligned}
& \left(2 x^{2}+2 y^{2}-7 x\right)-\left(2 x^{2}+2 y^{2}-8 y-14\right)=0 \\
& \Rightarrow-7 x+8 y+14=0, \therefore 7 x-8 y-14=0
\end{aligned}
$$

Q. 25 (4)
$S_{1} \equiv x^{2}+y^{2}-16 x+60=0$
.....(i)
$S_{2} \equiv x^{2}+y^{2}-12 x+27=0$
$S_{3} \equiv x^{2}+y^{2}-12 y+8=0$

The radical axis of circle (i) and circle (ii) is
$S_{1}-S_{2}=0 \Rightarrow-4 \mathrm{x}+33=0$
the radical axis of circle (ii) and circle (iii) is
$\mathrm{S}_{2}-\mathrm{S}_{3}=0 \Rightarrow-12+12 \mathrm{y}+19=0$
Solving (iv) and (v), we get the radical centre $\left(\frac{33}{4}, \frac{20}{3}\right)$.

Q. 26 (2)

Required equation is
$\left(x^{2}+y^{2}+13 x-3 y\right)+\lambda\left(2 x^{2}+2 y^{2}+4 x-7 y-25\right)=0$
which passes through $(1,1)$, so $\lambda=\frac{1}{2}$
Hence required equation is
$4 x^{2}+4 y^{2}+30 x-13 y-25=0$.
Q. 27 (1)

Let equation of circle be $x^{2}+y^{2}+2 g x+2 f y+c=0 \quad$ with $\quad x^{2}+y^{2}=p^{2}$ cutting orthogonally,
we get $0+0=+\mathrm{c}-\mathrm{p}^{2}$ or $\mathrm{c}=\mathrm{p}^{2}$
and passes through (a, b), we get
$\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ga}+2 \mathrm{fb}+\mathrm{p}^{2}=0$ or
$2 \mathrm{ax}+2 \mathrm{by}-\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{p}^{2}\right)=0$
Required locus as centre $(-\mathrm{g},-\mathrm{f})$ is changed to (x, y).

Given circle is $\left(2, \frac{3}{2}\right), \frac{5}{2}=\mathrm{r}_{1}$ (say)
Required normals of circlres are
$x+3=0, x+2 y=0$
which intersect at the centre $\left(-3, \frac{3}{2}\right), r_{2}=$ radius (say).
$2^{\text {nd }}$ circle just contains the $1^{\text {st }}$
i.e., $\mathrm{C}_{2} \mathrm{C}_{1}=\mathrm{r}_{2}-\mathrm{r}_{1} \Rightarrow \mathrm{r}_{2}=\frac{15}{2}$.

Q. 29 (2)

The polar of the point $\left(5,-\frac{1}{2}\right)$ is

$$
\begin{aligned}
& \mathrm{xx}_{1}+\mathrm{yy}_{1}+\mathrm{g}\left(\mathrm{x}+\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{y}+\mathrm{y}_{1}\right)+\mathrm{c}=0 \\
& \Rightarrow 5 \mathrm{x}-\frac{1}{2} \mathrm{y}-2(\mathrm{x}+5)+0+0=0 \\
& \Rightarrow 3 \mathrm{x}-\frac{\mathrm{y}}{2}-10=0 \Rightarrow 6 \mathrm{x}-\mathrm{y}-20=0
\end{aligned}
$$

Q. 30 (1)

Given two circles

$$
\begin{aligned}
& x^{2}+y^{2}-2 x+22 y+5=0 \\
& x^{2}+y^{2}+14 x+6 y+k=0
\end{aligned}
$$

The two circles cut orthogonally, if

$$
\begin{aligned}
& 2\left(\mathrm{~g}_{1} \mathrm{~g}_{2}+\mathrm{f}_{1} \mathrm{f}_{2}\right)=\mathrm{c}_{1}+\mathrm{c}_{2} \text { i.e., } 2(-1.7+11.3)=5+\mathrm{k} \\
& 2(-7+33)=5+\mathrm{k} \Rightarrow 52-5=\mathrm{k} \Rightarrow \mathrm{k}=47
\end{aligned}
$$

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (4)

diameter $=4 \sqrt{2}$
$r=2 \sqrt{2}$
Q. 2 (1)
$(3,4) \&(2,5)$ are ends of diameter of circle
So, Equation $(x-3)(x-2)+(y-4)(y-5)=0$ $x^{2}+y^{2}-5 x-9 y+26=0$
Q. 3 (2)

Equation of circle $(x-0)(x-a)+(y-1)(y-b)=0$ it cuts x -axis put $\mathrm{y}=0 \Rightarrow \mathrm{x}^{2}-\mathrm{ax}+\mathrm{b}=0$
Q. 4 (3)

Length of intercept on x -axis $=2 \sqrt{\mathrm{~g}^{2}-\mathrm{c}}$
$=2 \sqrt{\frac{25}{4}+14}=2 \sqrt{\frac{81}{4}}=9$
on y-axis $=2 \sqrt{\mathrm{f}^{2}-\mathrm{c}}=2 \sqrt{\left(\frac{13}{2}\right)^{2}+14}$
$=2 \sqrt{\frac{169+56}{4}}=2 \sqrt{\frac{225}{4}}=15$

Q. 5 (4)

given circle $x^{2}+y^{2}-4 x-6 y=0$
it cuts x-axis put $y=0, x=0,4$
it cuts y-axis put $x=0, y=0,6$
Hence mid points on x -axis $(2,0)$
on y-axis $(0,3)$
Equations of line $\frac{x}{2}+\frac{y}{3}=1 \Rightarrow 3 x+2 y-6=0$
Q. 6 (3)

Intersection of given lines is centre
$2 x-3 y-5=0$
$3 x-4 y-7=0$
$\frac{x}{21-20}=\frac{y}{-15+14}=\frac{1}{-8+9}$
$\Rightarrow \mathrm{x}=1, \mathrm{y}=-1$
$(1,-1), \pi r^{2}=154 \Rightarrow \quad r^{2}=\frac{154}{22} \times 7$
$\Rightarrow \mathrm{r}=7$
$\mathrm{g}=-1, \mathrm{f}=1, \mathrm{c}=\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{r}^{2}$
$=1+1-49=-47$
$x^{2}+y^{2}-2 x+2 y-47=0$
Q. 7 (2)
$x^{2}+(y \pm a)^{2}=a^{2}$
$x^{2}+y^{2} \pm 2 a y=0$

Q. 8 (1)

Centre $(2,-1)$, radius $=\sqrt{(3-2)^{2}+(6+1)^{2}}$
$=\sqrt{1+49}=\sqrt{50}$
$(x-2)^{2}+(y+1)^{2}=50$
$x^{2}+y^{2}-4 x+2 y-45=0$
Q. 9 (4)

Let the centre (a, b)
$(a-3)^{2}+(b)^{2}=(a-1)^{2}+(b+6)^{2}$
$=(a-4)^{2}+(b+1)$

(i) \& (ii)
$-6 a+9=-2 a+1+12 b+36$
$\Rightarrow 4 \mathrm{a}+12 \mathrm{~b}+28=0 \quad \Rightarrow \mathrm{a}+3 \mathrm{~b}+7=0$
(i) \& (iii)
$-6 a+9=-8 a+16+2 b+1$
$\Rightarrow 2 \mathrm{a}-2 \mathrm{~b}=8 \quad \Rightarrow \mathrm{a}-\mathrm{b}=4$
$a=\frac{5}{4}, b=-\frac{11}{4} \quad r=\sqrt{\frac{49}{16}+\frac{121}{16}}=\frac{\sqrt{170}}{4}$
$\mathrm{g}=-\frac{5}{4}, \mathrm{f}=\frac{11}{4}, \mathrm{c}=\frac{25}{16}+\frac{121}{16}-\frac{170}{16}$
$=\frac{-24}{16}=\frac{-3}{2}$
$x^{2}+y^{2}-2 \cdot \frac{5}{4} x+2 \cdot \frac{11}{4} y-\frac{3}{2}=0$
$2 x^{2}+2 y^{2}-5 x+11 y-3=0$

Q. 10 (1)

Circle is
$\mathrm{x}^{2}+\mathrm{y}^{2}=9$
\therefore co-ordinate of point A $(3 \cos \theta, 3 \sin \theta)$

centroid of $\triangle \mathrm{ABC}$ is $\mathrm{P}(\mathrm{h}, \mathrm{k})$ whose coordinate is $\left(\frac{3+3 \cos \theta-3}{3}, \frac{0+0+3 \sin \theta}{3}\right) \equiv(\cos \theta, \sin \theta)$
$\mathrm{h}=\cos \theta, \mathrm{k}=\sin \theta$
$h^{2}+\mathrm{k}^{2}=1 \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=1$
Q. 11 (2)
$x^{2}+y^{2}-2 x=0$
$(x-1)^{2}+y^{2}=1$
area $\Delta \mathrm{OAB}=3$ or $\Delta(\mathrm{OAP})$

$=3 \times \frac{1}{2} 1.1 \sin 120^{\circ}$
$=\frac{3}{2} \frac{\sqrt{3}}{2}=\frac{3 \sqrt{3}}{4}$ sq. units

Q. 12 (3)

$(x+4)(x-12)+(y-3)(y+1)=0$
$x^{2}+y^{2}-8 x-2 y-51=0$
$\mathrm{f}=(-1), \mathrm{c}=-51$

y intercept $=2 \sqrt{\mathrm{f}^{2}-\mathrm{c}}=2 \sqrt{1+51}$

$$
=2 \sqrt{52}=4 \sqrt{13}
$$

Aliter

centre $(4,1)$, radius $=\sqrt{68}$

$\mathrm{AP}=\sqrt{68-16}=\sqrt{52}$

$$
\mathrm{AB}=2(\mathrm{AP})=2 \sqrt{52}=4 \sqrt{13}
$$

Q. 13 (1)
$y^{2}-2 y+2 x y=0$ represent normals.

$$
\{(y(y-2)-2 x(y-2)=0)
$$

$$
(y-2)(y-2 x)=0\}
$$

Intersection point is centre
$y=2 \& y=2 x \Rightarrow x=1, y=2$
centre $(1,2)$, passing thorugh $(2,1)$
$r=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}$
$(x-1)^{2}+(y-2)^{2}=2$
$x^{2}+y^{2}-2 x-4 y+3=0$

Q. 14 (2)

Reflection of (a, b) in $y-x=0$ is (b, a) centre (b, a) touching x-axis.

$r=Q$
$(x-b)^{2}+(y-a)^{2}=a^{2}$
$x^{2}+y^{2}-2 b x-2 a y+b^{2}=0$
Q. 15

$\because \mathrm{P}(3,3)$
\therefore I
$\left(\frac{6 .(5 \sqrt{2})+0+7.6 \sqrt{2}}{5 \sqrt{2}+5 \sqrt{2}+6 \sqrt{2}}, \frac{0+6 .(5 \sqrt{2})+7(6 \sqrt{2})}{5 \sqrt{2}+5 \sqrt{2}+6 \sqrt{2}}\right)$
$I\left(\frac{9}{2}, \frac{9}{2}\right), r=I P=\sqrt{\left(\frac{9}{2}-3\right)^{2}+\left(\frac{9}{2}-3\right)^{2}}=\frac{3}{\sqrt{2}}$
$\Rightarrow\left(x-\frac{9}{2}\right)^{2}+\left(y-\frac{9}{2}\right)^{2}=\frac{9}{2}$
$\Rightarrow x^{2}+y^{2}-9 x-9 y+\frac{81}{2}-\frac{9}{2}=0$
$\Rightarrow x^{2}+y^{2}-9 x-9 y+36=0$

Q. 16 (1)

Point on the line $x+y+13=0$ nearest to the circle $x^{2}+y^{2}+4 x+6 y-5=0$ is foot of \perp from centre
$\frac{x+2}{1}=\frac{y+3}{1}=-\left(\frac{-2-3+13}{1^{2}+1^{2}}\right)=-4$
$x=-6, \quad y=-7$
Q. 17 (2)
$x^{2}+y^{2}-4 x-2 y-20=0, P(10,7)$
$S_{1}=100+49-40-14-20>0$
$\mathrm{P}(10,7)$

P lies outside
$\mathrm{O}(2,1), \mathrm{r}=\sqrt{4+1+20} \Rightarrow \mathrm{r}=5$
greatest distance $=\mathrm{PA}=\mathrm{PO}+\mathrm{OA}$
$=\sqrt{8^{2}+6^{2}}+5=10+5=15$
Q. 18 (3)
$x^{2}+y^{2}-4 x-4 y=0$
$C(2,2), r=\sqrt{4+4-0}=2 \sqrt{2}$

Parametric Coordinate

$(2+2 \sqrt{2} \cos \alpha, 2+2 \sqrt{2} \sin \alpha)$
Q. 19 (2)

Let slope of required line is m
$\mathrm{y}-3=\mathrm{m}(\mathrm{x}-2)$
$\Rightarrow \mathrm{mx}-\mathrm{y}+(3-2 \mathrm{~m})=0$

length of \perp from origin
$=3$
$\Rightarrow 9+4 \mathrm{~m}^{2}-12 \mathrm{~m}=9+9 \mathrm{~m}^{2}$
$\Rightarrow 5 \mathrm{~m}^{2}+12 \mathrm{~m}=0 \Rightarrow \mathrm{~m}=0,-\frac{12}{5}$
Hence lines are $y-3=0 \Rightarrow y=3$
$y-3=-\frac{12}{5}(x-2) \Rightarrow 5 y-15=-12 x+24$
$\Rightarrow 12 \mathrm{x}+5 \mathrm{y}=39$.
Q. 20 (2)

From centre $(2,-3)$, length of perpendicular on line $3 x+5 y+9=0$ is
$\mathrm{p}=\frac{6-15+9}{\sqrt{25+9}}=0$; line is diameter.
Q. 21 (1)

Required point is foot of \perp
$\frac{x-3}{2}=\frac{y+1}{-5}=-\left(\frac{6+5+8}{4+25}\right)=-1$
$\Rightarrow \mathrm{x}=-2+3=1$

$\mathrm{x}=1, \mathrm{y}=4$
Q. 22 (1)
$4=\left|\frac{c_{1}-c_{2}}{\sqrt{1+3}}\right| \Rightarrow\left|c_{1}-c_{2}\right|=8$

Q. 23 (2)

Point $(8,6)$ lies on circle ; $S_{1}=0 \Rightarrow$ one tangent.
Q. 24 (4)
$x^{2}+y^{2}=a^{2}$
$\mathrm{m}_{\mathrm{N}}=\tan \theta$
$m_{T}=-\frac{1}{m_{N}}=\frac{1}{\tan \theta}=-\cot \theta$
Q. 30 (1)
Q. 25 (3)

$$
\begin{aligned}
& \ell x+m y+n=0, x^{2}+y^{2}=r^{2} \\
& r=\left|\frac{n}{\sqrt{\ell^{2}+m^{2}}}\right| \Rightarrow r^{2}\left(\ell^{2}+m^{2}\right)=n^{2}
\end{aligned}
$$

Q. 26 (2)

Line parallel to given line $4 x+3 y+5=0$ is $4 x+3 y$

$$
+\mathrm{k}
$$

$$
=0
$$

This is tangent to $x^{2}+y^{2}-6 x+4 y-12=0$
$\left|\frac{12-6+k}{5}\right|=5$
$6+\mathrm{k}= \pm 25 \Rightarrow \mathrm{k}=19,-31$
Hence required line $4 x+3 y-31=0,4 x+3 y+19=$ 0
Q. 27 (1)
$p=\left|\frac{(-g+g) \cos \theta+(-f+f) \sin \theta-k}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}\right|$
$=\sqrt{g^{2}+f^{2}-c} \Rightarrow g^{2}+f^{2}=c+k^{2}$

Q. 28 (4)

Equation of tangent $x-2 y=5$
Let required point be (α, β)
$\alpha x+\beta y-4(x+\alpha)+3(y+\beta)+20=0$
$x(\alpha-4)+y(\beta+3)-4 \alpha+3 \beta+20=0$
Comparing
$\frac{\alpha-4}{1}=\frac{\beta+3}{-2}=\frac{4 \alpha-3 \beta-20}{5}$
Similarly $(\alpha, \beta) \equiv(3,-1)$
Q. 29 (3)

Let tangent be $\mathrm{y}=\mathrm{mx}$

$$
\begin{aligned}
&\left|\frac{7 \mathrm{~m}+1}{\sqrt{1+\mathrm{m}^{2}}}\right|=5 \\
& \Rightarrow 49 \mathrm{~m}^{2}+1+14 \mathrm{~m}=25\left(1+\mathrm{m}^{2}\right) \\
& 24 \mathrm{~m}^{2}+14 \mathrm{~m}-24=0 \\
& \mathrm{~m}_{1} \mathrm{~m}_{2}=-1 \quad \text { angle }=90^{\circ}
\end{aligned}
$$

$x^{2}+y^{2}-2 x+2 y-2=0$
Tangent at (1, 1)

$x+y-(x+1)+(y+1)-2=0$
$y-1+y+1-2=0$
$2 y-2=0$
$\mathrm{y}=1 \Rightarrow \mathrm{c}=1$
Q. 31 (2)

Tangent at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is
$\mathrm{xx}_{1}+\mathrm{yy}_{1}=25$
$3 \mathrm{x}+4 \mathrm{y}=25 \Rightarrow \mathrm{x}_{1}=3, \mathrm{y}_{1}=4 \Rightarrow\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(3,4)$
Q. 32 (1)

Let tangent from $(0,1)$ on $x^{2}+y^{2}-2 x+4 y=0$
$y-1=m x$
$C(1,-2), r=\sqrt{5}$
$\Rightarrow \mathrm{mx}-\mathrm{y}+1=0$
$\mathrm{r}=\sqrt{5}=\frac{|\mathrm{m}+2+1|}{\sqrt{\mathrm{m}^{2}+1}} \Rightarrow 5\left(\mathrm{~m}^{2}+1\right)=(\mathrm{m}+3)^{2}$
$\Rightarrow 4 \mathrm{~m}^{2}-6 \mathrm{~m}-4=0 \Rightarrow 2 \mathrm{~m}^{2}-3 \mathrm{~m}-2=0$
$\Rightarrow(\mathrm{m}-2)(2 \mathrm{~m}+1)=0 \Rightarrow \mathrm{~m}=2,-\frac{1}{2}$,
Tangents are

$$
\begin{aligned}
& 2 x-y+1=0 \\
& x+2 y-2=0
\end{aligned}
$$

Q. 33 (3)

Normal is diameter passing through centre (0,0)
$\& m=\frac{\frac{1}{\sqrt{2}}-0}{\frac{1}{\sqrt{2}}-0}=1$

$y=x \Rightarrow x-y=0$
Q. 34 (2)

Required diameter is \perp to given line.
Hence $y+1=-2(x-2)$

$\Rightarrow 2 \mathrm{x}+\mathrm{y}-3=0$
Q. 35 (1)

Normal to the circle $x^{2}+y^{2}-4 x+4 y-17=0$ also pusses through centre.
Hence its equation is line joining $(2,-2)$ and $(1,1)$

$$
\begin{aligned}
& (y-1)=\frac{1+2}{1-2}(x-1) \\
& y-1=-3 x+3 \\
& \Rightarrow 3 x+y-4=0
\end{aligned}
$$

Q. 36 (2)

Line passing thorough the intesection points of L_{1} \& L_{2} is tangent of circle
$(2 x-3 y+1)+\lambda(3 x-2 y-1)=0$
$(2+3 \lambda) x-y(3+2 \lambda)+(1-\lambda)=0$ is tangent of given circle

centre $(-1,2), r=\sqrt{1+2^{2}-0}=\sqrt{5}$

$$
\begin{aligned}
& \sqrt{5}=\left|\frac{-(2+3 \lambda)-2(3+2 \lambda)+(1-\lambda)}{\sqrt{(2+3 \lambda)^{2}+(3+2 \lambda)^{2}}}\right| \\
& =\frac{|-8 \lambda-7|}{\sqrt{(2+3 \lambda)^{2}+(3+2 \lambda)^{2}}} \\
& \Rightarrow 5\left[(2+3 \lambda)^{2}+(3+2 \lambda)^{2}\right]=(8 \lambda+7)^{2} \\
& \Rightarrow 65 \lambda^{2}+120 \lambda+65=64 \lambda^{2}+112 \lambda+49 \\
& \Rightarrow \lambda^{2}+8 \lambda+15=0 \quad \Rightarrow(\lambda+4)^{2}=0 \\
& \Rightarrow \lambda=-4 \Rightarrow \text { tangent }-10 \mathrm{x}+5 \mathrm{y}+5=0 \\
& \Rightarrow 2 \mathrm{x}-\mathrm{y}-1=0 \quad
\end{aligned}
$$

Aliter :

Point of intersection is $(1,1)$
$2 x-3 y+1=0$
$3 \mathrm{x}-2 \mathrm{y}-1=0$
$(1,1)$ lies on circle
\therefore tangent of circle is

$$
\begin{aligned}
& x \cdot 1+y \cdot 1+(x+1)-2 y(y+1)=0 \\
& \quad 2 x-y-1=0
\end{aligned}
$$

Q. 37 (1)

Given $\mathrm{a}^{2}+\mathrm{b}^{2}=1, \mathrm{~m}^{2}+\mathrm{n}^{2}=1$
i.e. points $(\mathrm{a}, \mathrm{b}) \&(\mathrm{~m}, \mathrm{n})$ on the circle $x^{2}+y^{2}=1$ tangent $a t(a, b)$

$a x+b y-1=0$ point $(0,0) \&(m, n)$ so lie some side of the tangent
$(0,0) \Rightarrow-1<0$
$\therefore(\mathrm{m}, \mathrm{n}) \Rightarrow \mathrm{am}+\mathrm{bn}-1<0 \Rightarrow \mathrm{am}+\mathrm{bn}<1$
$(\mathrm{m}, \mathrm{n}) \&(\mathrm{a}, \mathrm{b})$ can be equal
$\therefore \quad \mathrm{am}+\mathrm{bn} \leq 1$
$(\mathrm{m}, \mathrm{n}) \&(\mathrm{a}, \mathrm{b})$ can be negative
$\therefore|\mathrm{am}+\mathrm{bn}| \leq 1$
Q. 38 (3)

As we know
PA.PB $=\mathrm{PT}^{2}=(\text { Length of tangent })^{2}$

Length of tangent $=\sqrt{16 \times 9}=12$
Q. 39 (1)

Let any point on the circle $x^{2}+y^{2}+2 g x+2 f y+p=0$ (α, β)
This point satisfies $\alpha^{2}+\beta^{2}+2 \mathrm{~g} \alpha+2 \mathrm{f} \beta+\mathrm{p}=0$
Length of tangent from this point to circle $x^{2}+y^{2}+$ $2 g x+2 f y+q=0$
length $=\sqrt{S_{1}}=\sqrt{\alpha^{2}+\beta^{2}+2 g \alpha+2 f \beta+q}$
$=\sqrt{q-p}$
Q. 40 (3)
$2\left(x^{2}+y^{2}\right)-7 x+9 y-11=0, P(2,3)$

Point lie outside
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}-\frac{7}{2} \mathrm{x}+\frac{9}{2} \mathrm{y}-\frac{11}{2}=0$
Length of tangent
$\mathrm{T}_{1}=\sqrt{\mathrm{s}_{1}}=\sqrt{4+9-7+\frac{27}{2}-\frac{11}{2}}$
$=\sqrt{6+8}=\sqrt{14}$

Q. 41 (2)

Let point on line be
(h, $4-2 h$) (chord of contact)
$h x+y(4-2 h)=1$

$$
h(x-2 y)+4 y-1=0 \quad \text { Point }\left(\frac{1}{2}, \frac{1}{4}\right)
$$

Q. 42 (2)
$x^{2}+y^{2}-2 x-2 y-7=0$
$0(1,1), r=\sqrt{1+1+7}=3$
Equation of AB

$4 x+4 y-(x+4)-(y+4)-7=0$
$3 x+3 y=15 \Rightarrow x+y=5$
$\mathrm{OM}=\frac{|1+1-5|}{\sqrt{1^{2}+1^{2}}}=\frac{3}{\sqrt{2}}$
$A M=\sqrt{3^{2}-\frac{3^{2}}{2}}=\frac{3}{\sqrt{2}} \Rightarrow A B=2 \cdot \frac{3}{\sqrt{2}}=3 \sqrt{2}$

Q. 43 (4)

equation of pair of tangents and find angle betwen time.
$x^{2}+y^{2}=4 \&$ line $3 x+4 y=12$

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ oin given line \& C.O.C of P .
$\mathrm{xx}_{1}+\mathrm{yy}_{1}=4$
P satisfy given line
$3 \mathrm{x}_{1}+4 \mathrm{y}_{1}=12$
3(i) - (ii)
$\Rightarrow 3 x_{1}+3 y_{1}=12$
$3 \mathrm{x}_{1} \pm 4 \mathrm{y}_{1}=12$

$$
\frac{-\quad-}{3 x_{1}(x-1)+y_{1}(3 y-4)=0}
$$

$$
(x-1)+\lambda(3 y-4)=0
$$

$\Rightarrow \mathrm{L}_{1}+\lambda \mathrm{L}_{2}=0$
Find point $x=1 \& y=\frac{4}{3} \Rightarrow\left(1, \frac{4}{3}\right)$
Q. 44 (3)

Chord of contant from $(0,0) \&(g, f)$ are
$g x+f y+c=0$
$\& g x+f y+g(x+g)+f(y+f)+c=0$
$\Rightarrow 2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{g}^{2}+\mathrm{f}^{2}+\mathrm{c}=0$
distance between C.O.C.'s
$=\frac{\left|\frac{g^{2}+f^{2}+c-c}{2}\right|}{\sqrt{g^{2}+f^{2}}}=\frac{g^{2}+f^{2}-c}{2 \sqrt{g^{2}+f^{2}}}$
$\left\{\because \mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c} \geq 0\right\}$
Q. 45
(3)
$\cos 45^{\circ}=\frac{\mathrm{cm}}{\mathrm{cp}}=\frac{\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}}}{2}$

Hence locus $x^{2}+y^{2}=2$
Q. 46 (3)

Let mid point of cord $\mathrm{P}(\mathrm{h}, \mathrm{k})$
$x^{2}+y^{2}-2 x-4 y-11=0$
$\mathrm{C}(1,2), \mathrm{r}=4$
$\mathrm{CP}=4 \cos 30^{\circ}=4 \frac{\sqrt{3}}{2}=2 \sqrt{3}$

We know that locus is circle whose radius is CP \& centre $(1,2)$
$(x-1)^{2}+(y-2)^{2}=(2 \sqrt{3})^{2}$
$\Rightarrow x^{2}+y^{2}-2 x-4 y-7=0$
M-II equation of chord $T=S_{1}$ have a distance from centre is $2 \sqrt{3}$ and get the locus.
Q. 47 (1)

Let the centre $\mathrm{P}(\mathrm{h}, \mathrm{k})$
$\mathrm{m}_{\mathrm{PH}}=\frac{-1}{\mathrm{~m}_{2}}=\frac{-1}{-\frac{5}{2}}=\frac{2}{5}$

$\frac{\mathrm{k}-3}{\mathrm{~h}-2}=\frac{2}{5}$
$2 \mathrm{~h}-5 \mathrm{k}+11=0$
$2 \mathrm{x}-5 \mathrm{y}+11=0 \rightarrow$ Line PM.
Q. 48 (2)
$\mathrm{C}_{1} \mathrm{C}_{2}=5, \quad \mathrm{r}_{1}=7_{1} \quad \mathrm{r}_{2}=2$

$\mathrm{C}_{1} \mathrm{C}_{2}=\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right| \Rightarrow$ one common tangent

Q. 49 (2)

Equation of common tangent at point of contact is S_{1}
$-\mathrm{S}_{2}=0$
$\Rightarrow 10 \mathrm{x}+24 \mathrm{y}+38=0$
$\Rightarrow 5 \mathrm{x}+12 \mathrm{y}+19=0$
Q. 50
(A)
$\mathrm{S}_{1} \Rightarrow \mathrm{C}_{1}(1,0), \mathrm{r}_{1}=\sqrt{2}$
$\mathrm{S}_{2} \Rightarrow \mathrm{C}_{2}(0,1), \mathrm{r}_{2}=2 \sqrt{2}$
$\mathrm{C}_{1} \mathrm{C}_{2}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$

$C_{1} C_{2}=\left|r_{2}-r_{1}\right|$
$\sqrt{2}=\sqrt{2}$
Internally touch \therefore common tangent is one.
Q. 51 (1)
$x^{2}+y^{2}=9$
$\Rightarrow \mathrm{C}_{1}(0,0), \mathrm{r}_{1}=3$
$x^{2}+y^{2}+6 y+c=0$

$\mathrm{C}_{2}(0,-3), \mathrm{r}_{2}=\sqrt{9-\mathrm{c}}$
If circle are externally touching
$\mathrm{c}_{1} \mathrm{c}_{2}=\mathrm{r}_{1}+\mathrm{r}_{2}$
$B=3+\sqrt{9-C}$

$\Rightarrow \mathrm{c}=9$
If cirlce are internally touching
$\mathrm{C}_{1} \mathrm{C}_{2}=\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|$
$3=+3-\sqrt{9-\mathrm{c}}$ or $\quad 3=-3+\sqrt{9-\mathrm{c}}$
$\Rightarrow \mathrm{c}=9 \Rightarrow 6=\sqrt{9-\mathrm{c}}$
$\Rightarrow \mathrm{c}=-27$
$\mathrm{c}=9,-27$

Aliter :

Common tangent of $S_{1} \& S_{2}$
$6 y+c+9=0$
$3=\left|\frac{c+9}{\sqrt{6^{2}}}\right| \Rightarrow 18=|c+9|$
$\Rightarrow \mathrm{c}=9,-27$

Q. 52 (1)

Let required circle is $x^{2}+y^{2}+2 g x+2 f y+c=0$
Hence common chord with $x^{2}+y^{2}-4=0$
is $2 g x+2 f y+c+y=0$
This is diameter of circle $x^{2}+y^{2}=4$ hence $c=-4$.
Now again common chord with other circle

$2 \mathrm{x}(\mathrm{g}+1)+2 \mathrm{y}(\mathrm{f}-3)+(\mathrm{c}-1)=0$
This is diameter of $x^{2}+y^{2}-2 x+6 y+1=0$
$2(\mathrm{~g}+1)-6(\mathrm{f}-3)+5=0$
$2 \mathrm{~g}-6 \mathrm{f}+15=0$
locus $2 x-3 y-15=0$ which is st. line.

Q. 53 (3)

Common chord of given circle
$6 x+4 y+(p+q)=0$
This is diameter of $x^{2}+y^{2}-2 x+8 y-q=0$

centre $(1,-4)$
$6-16+(p+q)=0 \Rightarrow p+q=10$
Q. 54 (3)
$S_{1}-S_{3}=0 \Rightarrow 16 y+120=0$
$\Rightarrow \mathrm{y}=\frac{-120}{16}$
$\Rightarrow \mathrm{y}=-\frac{15}{2} \Rightarrow \mathrm{x}=8$
Intersection point of radical axis is
$\left(8, \frac{-15}{2}\right)$
Q. 55 (1)

Let point of intersection of tangents is (h, k) family of circle.

$x^{2}+y^{2}-(\lambda+6) x+(8-2 \lambda) y-3=0$
Common chord is $S-S_{1}=0$
$\Rightarrow-(\lambda+6) x+(8-2 \lambda) y-2=0$
$\Rightarrow(\lambda+6) x+(2 \lambda-8) y+2=0$
....(i)
C.O.C. from (h, k) to $S_{1}: x^{2}+y^{2}=1$ is $h x+k y=1$
(i) \& (ii) are same equation
$\frac{\lambda+6}{\mathrm{~h}}+\frac{2(\lambda-4)}{\mathrm{k}}=\frac{2}{-1}$
$\Rightarrow \lambda=-2 h-6, \quad \lambda=-k+4$
$\therefore-2 h-6=-\mathrm{k}+4$
$\Rightarrow 2 \mathrm{~h}-\mathrm{k}+10 \Rightarrow$ Locus : $2 \mathrm{x}-\mathrm{y}+10=0$
Q. 56
(1)
$S_{1}-S_{2}=0 \quad \Rightarrow \quad 7 x-8 y+16=0$
$\mathrm{S}_{2}-\mathrm{S}_{3}=0 \quad \Rightarrow \quad 2 \mathrm{x}-4 \mathrm{y}+20=0$
$S_{3}-S_{1}=0 \quad \Rightarrow \quad 9 x-12 y+36=0$
On solving centre $(8,9)$
Length of tangent
$=\sqrt{\mathrm{S}_{1}}=\sqrt{64+81-16+27-7}=\sqrt{149}$
$=(x-8)^{2}+(y-9)^{2}=149$
$=x^{2}+y^{2}-16 x-18 y-4=0$

Q. 57 (3)

Let centre (h, k) \& circle
$x^{2}+y^{2}+2 g x+2 f y+c=0$
$\mathrm{h}=-\mathrm{g}, \mathrm{k}=-\mathrm{f}$
For $S_{1}: g_{1}=2, f_{1}=-3, c_{1}=9$,
For $S_{2}: g_{2}=-\frac{5}{2}, f_{2}=2, c_{2}=-2$

$\therefore 2 . \mathrm{g} .2+2 . \mathrm{f}(-3)=\mathrm{c}+9$
$\Rightarrow 4 \mathrm{~g}-6 \mathrm{f}=\mathrm{c}+9$
$\& 2 \mathrm{~g}\left(\frac{-5}{2}\right)+2 . \mathrm{f}(2)=\mathrm{c}-2$
$\Rightarrow \quad-5 \mathrm{~g}+4 \mathrm{f}=\mathrm{c}-2$
...(2)
Subtract (2) from (1)
$-9 \mathrm{~g}+10 \mathrm{f}=11 \Rightarrow 9 \mathrm{x}-10 \mathrm{y}+11=0$
Q. 58
(4)
$2 C D=A B$
$\mathrm{CD}=\mathrm{OC}=\mathrm{OD}=\mathrm{AC}$
$\frac{A B}{A E}=\cos 60^{\circ}$

JEE-ADVANCED

$A E=\frac{A B}{1 / 2}=2 A B$

Q. 59 (1)

Circle $x^{2}+(y-b)^{2}=b^{2}$
$\Rightarrow x^{2}+y^{2}-2 b y=0$
Polar w.r.t. circle $\mathrm{P}(\mathrm{h}, \mathrm{k})$

$\therefore \mathrm{hx}+\mathrm{ky}-\mathrm{b}(\mathrm{y}+\mathrm{k})=0$
$\Rightarrow \mathrm{hx}+\mathrm{y}(\mathrm{k}-\mathrm{b})-\mathrm{bk}=0$
Compair with
$\ell x+m y+n=0$
$\Rightarrow \frac{\ell}{\mathrm{h}}=\frac{\mathrm{m}}{\mathrm{k}-\mathrm{b}}=\frac{\mathrm{n}}{-\mathrm{bk}}$
$\Rightarrow \quad \ell=\frac{\mathrm{hn}}{-\mathrm{bk}} \& \mathrm{~m}=\frac{\mathrm{n}(\mathrm{k}-\mathrm{b})}{-\mathrm{bk}}$
$\Rightarrow \mathrm{b}=\frac{-\mathrm{hn}}{\ell \mathrm{k}} \& \mathrm{mbk}+\mathrm{n}(\mathrm{k}-\mathrm{b})=0$
$\therefore-\mathrm{mk} \frac{\mathrm{hn}}{\ell \mathrm{k}}+\mathrm{n}\left(\mathrm{k}+\frac{\mathrm{hn}}{\ell \mathrm{k}}\right)=0$
$\Rightarrow-\frac{\mathrm{mnh}}{\ell}+\frac{\mathrm{n}\left(\mathrm{k}^{2} \ell+\mathrm{hn}\right)}{\mathrm{k} \ell}=0$
$\Rightarrow-\mathrm{mnhk}+\mathrm{nk}^{2} \ell+\mathrm{hn}^{2}=0$
$\Rightarrow-\mathrm{mhk}+\mathrm{k}^{2} \ell+\mathrm{hn}=0$
$\Rightarrow \mathrm{h}(\mathrm{mk}-\mathrm{n})-\ell \mathrm{k}^{2}=0$
$\Rightarrow \mathrm{x}(\mathrm{my}-\mathrm{n})-\ell \mathrm{y}^{2}=0$

OBJECTIVE QUESTIONS

Q. 1 (B)

$$
\begin{aligned}
& \mathrm{h}^{2}+\mathrm{b}^{2}=\mathrm{r}^{2} \\
& \mathrm{k}^{2}+\mathrm{a}^{2}=\mathrm{r}^{2} \\
& \Rightarrow \mathrm{~h}^{2}-\mathrm{k}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}
\end{aligned}
$$

$\therefore \quad$ locus is $\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$

Q. 2 (B)

Let centre $(\mathrm{a}, 0)$, radius $=\mathrm{a}$
$(a-3)^{2}+4^{2}=a^{2}$
$-6 a+9+16=0$
$6 a=25 \Rightarrow a=\frac{25}{6}$

$\mathrm{g}=-\frac{25}{6}, \mathrm{f}=0, \mathrm{c}=0$
$x^{2}+y^{2}-\frac{25}{3} x=0$
Aliter :
$\mathrm{c}=0, \mathrm{f}=0$ Let circle
$x^{2}+y^{2}+2 g x=0$ passes $(3,4)$
$9+16+6 g=0$
$g=\frac{-25}{3} \Rightarrow 3\left(x^{2}+y^{2}\right)-25 x=0$
Q. 3 (C)
$(x+3)^{2}+(y \pm 4)^{2}=16$
$x^{2}+y^{2}+6 x \pm 8 y+9=0$
Q. 4 (A)

Let centre (a, b)
$A B^{2}=(6 k)^{2}=(2 a)^{2}+(-2 b)^{2}$

$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}=9 \mathrm{k}^{2}$

Let centroid of $\triangle \mathrm{OAB}$ is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\mathrm{x}_{1}=\frac{2 \mathrm{a}}{3}, \mathrm{y}_{1}=\frac{2 \mathrm{~b}}{3} \Rightarrow \mathrm{a}=\frac{3}{2} \mathrm{x}_{1}, \mathrm{~b}=\frac{3}{2} \mathrm{y}_{1}$
$\Rightarrow\left(\frac{3 x_{1}}{2}\right)^{2}+\left(\frac{3 y_{1}}{2}\right)^{2}=9 \mathrm{k}^{2}$
$\Rightarrow \mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}=(2 \mathrm{k})^{2} \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=(2 \mathrm{k})^{2}$
Q. 6 (D)
$\mathrm{AD} \perp \mathrm{BC}$
In $\triangle A C D \Rightarrow \frac{A D}{A C}=\sin \theta$
In $\triangle \mathrm{ABD} \Rightarrow \frac{\mathrm{AD}}{\mathrm{AB}}=\cos \theta$
$(\text { i })^{2}+(\text { ii) })^{2}$
$\Rightarrow \frac{A D^{2}}{A C^{2}}+\frac{A D^{2}}{A B^{2}}=1$

$\Rightarrow \frac{1}{A C^{2}}+\frac{1}{A B^{2}}=\frac{1}{A D^{2}}$
$\Rightarrow A C^{2}=\frac{A B^{2} A D^{2}}{A B^{2}-A D^{2}} \Rightarrow A C=\frac{A B \cdot A D}{\sqrt{A B^{2}-A D^{2}}}$
Q. 7 (D)

Let equation of circle is
$x^{2}+y^{2}+2 g x+2 f y+c=0$
passes through $(1, t),(t, 1) \&(t, t)$
$\Rightarrow 1+\mathrm{t}^{2}+2 \mathrm{~g}+2 \mathrm{ft}+\mathrm{c}=0$
$\Rightarrow \mathrm{t}^{2}+1+2 \mathrm{gt}+2 \mathrm{f}+\mathrm{c}=0$
$\Rightarrow \mathrm{t}^{2}+\mathrm{t}^{2}+2 \mathrm{gt}+2 \mathrm{ft}+\mathrm{c}=0 \ldots$...(iii)
by (i), (ii) \& (iii) we get
$g=-\frac{(t+1)}{2}, f=-\frac{(t+1)}{2}, c=2 t$
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{x}(\mathrm{t}+1)-\mathrm{y}(\mathrm{t}+1)+2 \mathrm{t}=0$
$\left(x^{2}+y^{2}-x-y\right)+t(-x-y+2)=0$
$\Rightarrow \mathrm{S}+\mathrm{tL}=0$
Fixed point of intesection of S \& L
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}=2$
$\& x+y=2$
$\Rightarrow x^{2}+(2-x)^{2}=2$
$\Rightarrow 2 \mathrm{x}^{2}-4 \mathrm{x}+2=0$
$\Rightarrow(\mathrm{x}-1)^{2}=0$

$\Rightarrow x=1 \& y=1$
Point $(1,1)$
Q. 8 (A,C,D)

Centres $(2,2),(-2,2),(-2,-2),(2,-2) \&$ radius $=2$
(A) Centres lies on $y^{2}-x^{2}=0$
(B) not only $y=x$
(C) Area of quadrilateral ABCD

By parameteric
$\mathrm{B}(6+\sqrt{10} \cos \theta, 2+\sqrt{10} \sin \theta)$
$\tan \theta=\frac{1}{3}$

$\mathrm{B}\left(6+\sqrt{10} \times \frac{3}{\sqrt{10}}, 2+\sqrt{10} \times \frac{1}{\sqrt{10}}\right) \equiv \mathrm{B}(9,3)$

Q. 12 (A)

$\left(x^{2}-2 x+1\right)-y^{2}=0 \Rightarrow(x+y-1)=0$
$x-y-1=0$
$\left|\frac{h-0-1}{\sqrt{2}}\right|=\sqrt{(h-3)^{2}+\frac{7}{2}}$
$h^{2}+1-2 h=2\left(h^{2}+9-6 h+\frac{7}{2}\right)$

$\Rightarrow \mathrm{h}^{2}-10 \mathrm{~h}+24=0 \Rightarrow \mathrm{~h}=6,4$
But centre lies inside the circle $x^{2}+y^{2}-8 x+10 y+$ $15=0$
Hence required point $(4,0)$
Q. 13 (B)
$\mathrm{AC}=2=\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=\mathrm{AD}$
$\mathrm{OB}=\sqrt{2^{2}-1}=\sqrt{3}$
In $\triangle \mathrm{OAM}$,
$\frac{\mathrm{r}}{\mathrm{OA}} \sin 60^{\circ}$

$$
\Rightarrow \mathrm{r}=\frac{\sqrt{3}}{2}
$$

Any point
on the circle
$\mathrm{P}\left(\frac{\sqrt{3}}{2} \cos \theta, \frac{\sqrt{3}}{2} \sin \theta\right)$
$|\mathrm{PA}|^{2}=\left(\frac{\sqrt{3}}{2} \cos \theta-1\right)^{2}+\left(\frac{\sqrt{3}}{2} \sin \theta\right)^{2}=\frac{3}{4}+1-\cos \theta$
$|\mathrm{PB}|^{2}=\left(\frac{\sqrt{3}}{2} \cos \theta\right)^{2}+\left(\frac{\sqrt{3}}{2} \sin \theta-\sqrt{3}\right)^{2}=\frac{3}{4}+3-3$
$\sin \theta$
$|\mathrm{PC}|^{2}=\left(\frac{\sqrt{3}}{2} \cos \theta+1\right)^{2}+\left(\frac{\sqrt{3}}{2} \sin \theta\right)^{2}=\frac{3}{4}+1+\sqrt{3}$
$\cos \theta$
$|\mathrm{PD}|^{2}=\left(\frac{\sqrt{3}}{2} \cos \theta\right)^{2}+\left(\frac{\sqrt{3}}{2} \sin \theta+\sqrt{3}\right)^{2}=\frac{3}{4}+3+3$
$\sin \theta \Rightarrow \operatorname{sum}=4 \cdot \frac{3}{4}+8=11$
Q. 14 (A)
$x^{2}+y^{2}<25$
on x-axis \& y-axis $4 \times 4+1=17$
$\mathrm{x}=1, \mathrm{y}=1,2,3,4$
$\mathrm{x}=2, \mathrm{y}=1,2,3,4$
$\mathrm{x}=3, \mathrm{y}=1,2,3$
$x=4, y=1,2$
In I^{S} quadrant 13
In all quadrant $=13 \times 4=52$
No. of points $=52+17=69$

Q. 15 (B)

$\mathrm{AD}=2 \mathrm{r} \sin 60^{\circ}=2 \mathrm{r} \frac{\sqrt{3}}{2}=\sqrt{3} \mathrm{r}$

$\mathrm{AO}=\sqrt{3} r \times \frac{2}{3}=\frac{2 r}{\sqrt{3}}$
$\mathrm{OP}=\mathrm{OA}+\mathrm{AP}$
$=\frac{2 r}{\sqrt{3}}+r=\frac{(2+\sqrt{3}) r}{\sqrt{3}}$

Q. 16 (B)

$(3,4)$
$(x-3)(x+1)+(y-4)(y+2)=0$
Equation $x^{2}+y^{2}-2 x-2 y-11=0$
Q. 17 (C)
$\mathrm{r}=1$
$\mathrm{AB}=\sqrt{2^{2}-1}=\mathrm{CD}=\sqrt{3}$
$\cos (90-\theta)=\frac{1}{2}$
$\theta=\frac{\pi}{6}$
$\Rightarrow 2 \theta=\frac{\pi}{3}$
$\operatorname{arc} \mathrm{BC}=\ell(\overparen{\mathrm{BC}})=\frac{2 \pi \cdot 1}{6}=\frac{\pi}{3}$
Shortest path is $=2 \sqrt{3}+\frac{\pi}{3}$
Q. 18 (C)
as we know $L_{i n t}=\sqrt{d^{2}-\left(r_{1}+r_{2}\right)^{2}}=7$
$L_{\text {ext }}=\sqrt{d^{2}-\left(r_{1}-r_{2}\right)^{2}}=11$
squaring \& subtact $r_{1} r_{2}=18$
Q. 19 (A)

Let any point $P\left(x_{1}, y_{1}\right)$ to the circle $x^{2}+y^{2}-\frac{16 x}{5}$
$+\frac{64 y}{15}=0$
$x_{1}{ }^{2}+y_{1}{ }^{2}-\frac{16}{5} x_{1}+\frac{64}{15} y_{1}=0$
Length of tangent from $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the circle are in ration

$$
\begin{aligned}
& \frac{\sqrt{S_{1}}}{\sqrt{S_{2}}}=\frac{\sqrt{x_{1}^{2}+y_{1}^{2}-\frac{24}{5} x_{1}+\frac{32}{5} y_{1}+15}}{\sqrt{x_{1}^{2}+y_{1}^{2}-\frac{48}{5} x_{1}+\frac{64}{5} y_{1}+60}} \\
& =\sqrt{\frac{\frac{16}{5} x_{1}-\frac{64}{15} y_{1}-\frac{24}{5} x_{1}+\frac{32}{5} y_{1}+15}{64} x_{1}-\frac{64}{15} y_{1}-\frac{48}{5} x_{1}+\frac{64}{5} y_{1}+60} \\
& =\sqrt{\frac{-24 x_{1}+32 y_{1}+225}{-96 x_{1}+128 y_{1}+900}} \\
& =\sqrt{\frac{-24 x_{1}+32 y_{1}+225}{4\left(-24 x_{1}+32 y_{1}+225\right)}}=\frac{1}{2}
\end{aligned}
$$

Q. 20 (A)

Standard result $=\frac{a\left(h^{2}+k^{2}-a^{2}\right)^{3 / 2}}{h^{2}+k^{2}}=\frac{3(25-9)^{3 / 2}}{25}$

$$
=\frac{3 \times 16 \times 4}{25}=\frac{192}{25}
$$

Q. 21 (D)

Tangent at $(1,2)$ to the circle $x^{2}+y^{2}=5$

$$
x+2 y-5=0
$$

chord of contact from $C(h, k)$ to $x^{2}+y^{2}=9$
$h x+k y-9=0$

compare both equations $\frac{\mathrm{h}}{1}=\frac{\mathrm{k}}{2}=\frac{9}{5}$
$(\mathrm{h}, \mathrm{k}) \equiv\left(\frac{9}{5}, \frac{18}{5}\right)$

Q. 22 (A)

$(x+g)(x-2)+(y+f)(y-1)=0$
Q. 23 (B)

$\tan \theta=\tan \alpha \Rightarrow \theta=\alpha$
angle $=2 \alpha$
Q. 24 (B, C)
$(x-4)^{2}+(y-8)^{2}=20$
$x^{2}+y^{2}-8 x-16 y+60=0$
C.O.C.
$-2 x-4(x-2)(x-2)-8(y+0)+60=0$
$-6 x-8 y+68=0$
$\Rightarrow 3 x+4 y-34=0$
$\mathrm{AO}=\sqrt{6^{2}+8^{2}}=10$
$O M=\frac{12 x+32-34}{\sqrt{3^{2}+4^{2}}}=\frac{10}{5}=2$

$M\left(\frac{14}{5}, \frac{32}{5}\right)$
$\mathrm{PM}=\sqrt{20-4}=\sqrt{16}=4$
C.O. $C=\tan \theta=\frac{-3}{4}$
$\Rightarrow \sin \theta=\frac{3}{5}, \cos \theta=\frac{-4}{5}$
in parametric form
$\frac{x-\frac{14}{5}}{-\frac{4}{5}}=\frac{y-\frac{32}{5}}{\frac{3}{5}}= \pm 4$

$\Rightarrow \frac{5 x-14}{-4}=\frac{5 y-32}{3}= \pm 4$
$\Rightarrow 5 \mathrm{x}=14-16,5 \mathrm{y}=32+12$
$\mathrm{x}=-\frac{2}{5}, \mathrm{y}=\frac{44}{5}$
$\left(\frac{-2}{5}, \frac{44}{5}\right)$
$5 x=14+16,5 y=32-12$
$\mathrm{x}=6, \mathrm{y}=4$
$(6,4)$
Q. 25 (B)
$\cos \pi / 3=\frac{\sqrt{(\mathrm{h}+2)^{2}+(\mathrm{k}-3)^{2}}}{5}$
Locus $(x+2)^{2}+(y-3)^{2}=6.25$

Q. 26 (C)

Given $x^{2}+y^{2}-a x-b y=0$
Centre $\equiv\left(\frac{a}{2}, \frac{b}{2}\right), r=\frac{\sqrt{a^{2}+b^{2}}}{2}$

In $\triangle \mathrm{OPA}$,
$\Rightarrow \frac{\mathrm{OP}}{\mathrm{OA}}=\sin 45^{\circ}$

$\Rightarrow \mathrm{OP}=\frac{\mathrm{OA}}{\sqrt{2}}$
$\Rightarrow \frac{\sqrt{a^{2}+b^{2}}}{2 \sqrt{2}}=\sqrt{\left(h-\frac{a}{2}\right)^{2}+\left(k-\frac{b}{2}\right)^{2}}$
$\Rightarrow \frac{a^{2}+b^{2}}{8}=h^{2}-a h+\frac{a^{2}}{4}+k^{2}-b k+\frac{b^{2}}{4}$
$\Rightarrow \mathrm{h}^{2}+\mathrm{k}^{2}-\mathrm{ah}-\mathrm{bk}+\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{8}=0$
$\Rightarrow x^{2}+y^{2}-a x-b y+\frac{a^{2}+b^{2}}{8}=0$
Q. 27 (C)

Pair of tangents from $(0,0)$ on
$x^{2}+y^{2}+20(x+y)+20=0$
$\mathrm{T}^{2}=\mathrm{SS}_{1}$
$(0+20(x+y)+20)^{2}$
$=\left(x^{2}+y^{2}+20 x+20 y+20\right)(20)$
$(x+y)^{2}+400(x+y)+400$
$=20\left(x^{2}+y^{2}\right)+400(x+y)+400$
$5(x+y)^{2}=x^{2}+y^{2}$
$4 x^{2}+4 y^{2}+10 x y=0$
$2 x^{2}+5 x y+2 y^{2}=0$
M-II C.O.C from $(0,0) 8$ honoziniation to circle and get pair to tangents.
Q. 28 (B)

slope of $\mathrm{C}_{1} \mathrm{C}_{2}$ is $\tan \alpha=-\frac{4}{3}$

By using parametric coordinates
$\mathrm{C}_{2}(\pm 3 \cos \alpha, \pm 3 \sin \alpha)$
$C_{2}(\pm 3(-3 / 5), \pm 3(4 / 5)$
$C_{2}(\pm 9 / 5, \mp 12 / 5)$
Q. 29 (B)

If two circles touch each other, then
$\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{r}_{1}+\mathrm{r}_{2}$
$\sqrt{\left(-g_{1}+g_{2}\right)^{2}+\left(-f_{1}+f_{2}\right)^{2}}=\sqrt{g_{1}^{2}+f_{1}^{2}}+\sqrt{g_{2}^{2}+f_{2}^{2}}$
squaring both sides

$$
-2 \mathrm{~g}_{1} \mathrm{~g}_{2}-2 \mathrm{f}_{1} \mathrm{f}_{2}=2 \sqrt{\left(\mathrm{~g}_{1}^{2}+\mathrm{f}_{1}^{2}\right)\left(\mathrm{g}_{2}^{2}+\mathrm{f}_{2}^{2}\right)}
$$

$$
\Rightarrow\left(g_{1} f_{2}\right)^{2}+\left(g_{2} f_{1}\right)^{2}-2 g_{1} g_{2} f_{1} f_{2}=0 \Rightarrow \frac{g_{1}}{g_{2}}=\frac{f_{1}}{f_{2}}
$$

Q. 30

$$
\mathrm{O}_{1} \mathrm{O}_{2}=\sqrt{3}+1
$$

Sine rule in $\mathrm{AO}_{1} \mathrm{O}_{2}$

$\frac{\sqrt{3}+1}{\sin 105^{\circ}}=\frac{r_{1}}{\sin 30^{\circ}}=\frac{r_{2}}{\sin 45^{\circ}}$
$r_{1}=\frac{\sqrt{3}+1}{\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right)} \times \frac{1}{2}=\sqrt{2}$
$r_{2}=2$
Q. 31 (B)

Common chord $\mathrm{r}_{1}=5=\mathrm{r}_{2}$
$-6 x+8 y-7=0$
$\Rightarrow 6 x-8 y+7=0$

$C_{1} M=\left|\frac{18-0+7}{\sqrt{6^{2}+8^{2}}}\right|=\frac{25}{10}=\frac{5}{2}$
$A M=\sqrt{25-\frac{25}{4}}=\sqrt{\frac{75}{4}}=\frac{5}{2} \sqrt{3}$
$\mathrm{AB}=2 \mathrm{AM}=5 \sqrt{3}$

Aliter :

$\mathrm{r}_{1}=\mathrm{r}_{2}=5$
$\mathrm{AC}_{1}=\mathrm{AC}_{2}=\mathrm{C}_{1} \mathrm{C}_{2}=5$
$\Rightarrow \Delta \mathrm{AC}_{1} \mathrm{C}_{2}$ equilateral
$A M=5 \sin 60^{\circ}=\frac{5 \sqrt{3}}{2} \Rightarrow A B=5 \sqrt{3}$
Q. 32 (C)
(4) $\mathrm{a}=5, \mathrm{~b}=4, \mathrm{c}=3$
which is right angled Δ at A
$\angle \mathrm{PAB}=\theta, \angle \mathrm{PAC}=\alpha, \theta+\alpha=90^{\circ}$
In $\triangle \mathrm{ABP}$

$$
\cos \theta=\frac{9+(r+1)^{2}-(r+2)^{2}}{2 \cdot 3 \cdot(r+1)}
$$

$$
=\frac{9+r^{2}+2 r+1-r^{2}-4 r-4}{6(r+1)}=\frac{6-2 r}{6(r+1)}
$$

$$
\Rightarrow \cos \theta=\frac{3-r}{3(1+r)}
$$

In $\triangle \mathrm{ACP}$
$\cos \alpha=\frac{16+(r+1)^{2}-(3+r)^{2}}{2 \cdot 4 .(r+1)}$

$=\frac{16+r^{2}+2 r-1-9-6 r-r^{2}}{2.4(r+1)}$
$=\frac{8-4 r}{8(r+1)}=\frac{(2-r)}{2(1+r)}$
$\theta+\alpha=90^{\circ}$
$\theta=90-\mathrm{a} \Rightarrow \cos \theta=\sin \alpha$
$\Rightarrow \cos ^{2} \theta=\sin ^{2} \alpha$

$$
\begin{aligned}
& =\frac{(3-r)^{2}}{9(1+r)^{2}}=\frac{4(1+r)^{2}-(2-r)^{2}}{4(1+r)^{2}} \\
& \Rightarrow 4\left(9-6 r+r^{2}\right)=9\left[4+8 r+4 r^{2}+4 r-r^{2}\right] \\
& \Rightarrow 36-24 r+4 r^{2}=108 r+27 r^{2} \\
& \Rightarrow 23 r^{2}+132 r-36=0
\end{aligned}
$$

$\Rightarrow(r+6)(23 r-6)=0$
$\Rightarrow r=\frac{6}{23}$
$\because r+6 \neq 0$
Q. 33 (C)
$\mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{C}_{1}(0,0), \mathrm{r}_{1}=1$
$x^{2}+y^{2}-2 x-6 y+6=0, C_{2}(1,3), r_{2}=2$
$\frac{\mathrm{C}_{1} \mathrm{P}}{\mathrm{C}_{2} \mathrm{P}}=\frac{1}{2}$
O is mid point of PC_{2}
$\mathrm{P}(-1,-3)$
D.C.T.
$\mathrm{y}+3=\mathrm{m}(\mathrm{x}+1) \Rightarrow \mathrm{mx}-\mathrm{y}+\mathrm{m}-3=0$
$1=\frac{|m-3|}{\sqrt{m^{2}+1}}$
$\Rightarrow \mathrm{m}^{2}+1=\mathrm{m}^{2}+1=\mathrm{m}^{2}-6 \mathrm{~m}+9$
$m=\frac{4}{3} \& m=\infty$
$x=-1 \& 4 x-3 y-5$
Q. $\left(\frac{1.1+2.0}{3}, \frac{3.1+2.0}{3}\right) \equiv\left(\frac{1}{3}, 1\right)$

т.C.T.
$y-1=m\left(x-\frac{1}{3}\right)$
$\Rightarrow 3 m x-3 y+3-m=0$
$1=\frac{|3-m|}{\sqrt{9 m^{2}+9}}$
$\Rightarrow 9 m^{2}+9=m^{2}-6 m+9$
$\Rightarrow 8 \mathrm{~m}^{2}+6 \mathrm{~m}=0$

$$
m=0, m=-\frac{3}{4}
$$

$y=1 \& 3 x+4 y-5=0$
Q. 34 (A)

Common chord of given circle
$2 x+3 y-1=0$
family of circle passing through point of intersection of given circle
$\left(x^{2}+y^{2}+2 x+3 y-5\right)+\lambda\left(x^{2}+y^{2}-4\right)=0$
$(\lambda+1) x^{2}+(\lambda+1) y^{2}+2 x+3 y-(4 \lambda+5)=0$
$x^{2}+y^{2}+\frac{2 x}{\lambda+1}+\frac{3}{\lambda+1} y-\frac{(4 \lambda+5)}{\lambda+1}=0$

centre $\left(-\frac{1}{\lambda+1}, \frac{-3}{2(\lambda+1)}\right)$
This centre lies on AB
$2\left(-\frac{1}{\lambda+1}\right)+3\left(\frac{-3}{2(\lambda+1)}\right)-1=0$
$-4-9-2 \lambda-2=0$
$\Rightarrow 2 \lambda=-15$
$\Rightarrow \lambda=-15 / 2$
$\left(-\frac{15}{2}+1\right) x^{2}+\left(-\frac{15}{2}+1\right) y^{2}+2 x+3 y-$
$\left(-4 \times \frac{15}{2}+5\right)=0$
$\Rightarrow-\frac{13 x^{2}}{2}-\frac{13 y^{2}}{2}+2 x+3 y+25=0$
$\Rightarrow 13\left(x^{2}+y^{2}\right)-4 x-6 y-50=0$
Q. 35 (B)
$\left(x^{2}+y^{2}-6 x-4 y-12\right)+\lambda(4 x+3 y-6)=0$
This is family of circle passing through points of in-
tersection of circle

$x^{2}+y^{2}-6 x-4 y-12=0$ and line $4 x+3 y-6=0$ other family will cut this family at A \& B.
Hence locus of centre of circle of other family is this common chord $4 x+3 y-6=0$

Q. 36 (A)

Let required equation of circle is $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{gx}$
$+2 \mathrm{fy}+\mathrm{c}=0$
it cuts the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-9=0$ orthogonally
$\therefore 2 \mathrm{~g}(0)+2 \mathrm{f}(0)=\mathrm{c}-9 \Rightarrow \mathrm{c}=9$
It also touches straight line $\ell \mathrm{x}+\mathrm{my}+\mathrm{n}=0$
$\therefore\left|\frac{\ell(-\mathrm{g})+\mathrm{m}(-\mathrm{f})+\mathrm{n}}{\sqrt{\ell^{2}+\mathrm{m}^{2}}}\right|=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-9}$
Locus of centre $(-\mathrm{g},-\mathrm{f})$ is $(\ell \mathrm{x}+\mathrm{my}+\mathrm{n})^{2}$ $=\left(\mathrm{x}^{2}+\mathrm{y}^{2}-9\right)\left(\ell^{2}+\mathrm{m}^{2}\right)$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (A, D)

$$
\left|\frac{4 C+3 C-12}{5}\right|=C \Rightarrow C=1,6
$$

Q. 2 (B, C)

Let equation of required circle is
$x^{2}+y^{2}+2 g x+2 f y+c=0$
it passes through $(1,-2) \&(3,-4)$
$2 \mathrm{~g}-4 \mathrm{f}+\mathrm{c}=-5$
$6 \mathrm{~g}-8 \mathrm{f}+\mathrm{c}=-25$
$4 \mathrm{~g}-8 \mathrm{f}+2 \mathrm{c}=-10$
$6 \mathrm{~g}-8 \mathrm{f}+\mathrm{c}=-25$
$-2 \mathrm{~g}+\mathrm{c}=15$
circle touches x -axis $\mathrm{g}^{2}=\mathrm{c} \Rightarrow \mathrm{g}^{2}-2 \mathrm{~g}-15=0$
$\mathrm{g}=5,-3$
$\mathrm{g}=5, \mathrm{c}=25, \mathrm{f}=10 \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+10 \mathrm{x}+20 \mathrm{y}+25=0$
$\mathrm{g}=-3, \mathrm{c}=9, \mathrm{f}=2 \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{x}+4 \mathrm{y}+9=0$
Q. 3
(A, D)
Now
$(\mathrm{r}-3)^{2}+(-\mathrm{r}+6)^{2}=\mathrm{r}^{2}$
$\mathrm{r}^{2}-18 \mathrm{r}+45=0$
$\Rightarrow \mathrm{r}=3,15$

Hence circle
$(x-3)^{2}+(y+3)^{2}=3^{2}$
$x^{2}+y^{2}-6 x+6 y+9=0$
$(x-15)^{2}+(y+15)^{2}=(15)^{2}$
$\Rightarrow x^{2}+y^{2}-30 x+30 y+225=0$
Q. 4 (A, D)

Two fixed pts. are point of intersection of $x^{2}+y^{2}-2 x-2=0 \& y=0$
Point $x^{2}-2 x-2=0$
$(x-1)^{2}-3=0$
$\Rightarrow \mathrm{x}-1=\sqrt{3}, \mathrm{x}-1=-\sqrt{3}$
$(1+\sqrt{3}, 0)(1-\sqrt{3}, 0)$
Q. 5 (C,D)
$r=\sqrt{2^{2}+3^{2}-4}=3 \Rightarrow \mathrm{CP}=5$
$\frac{|2 a+9+8|}{\sqrt{a^{2}+9}}=5$
$|2 \mathrm{a}+17|=5 \sqrt{\mathrm{a}^{2}+9}$

$4 \mathrm{a}^{2}+289+68 \mathrm{a}=25 \mathrm{a}^{2}+225$
$21 a^{2}-68 a-64=0$
$S=\frac{68}{21}$
$\Rightarrow[\mathrm{S}]=3$
Q. 6 (B, C)
$(x-r)^{2}+y^{2}=r^{2}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{xr}=0$
8 tangent at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\mathrm{xx}_{1}+\mathrm{yy}_{1}-\mathrm{r}\left(\mathrm{x}+\mathrm{x}_{1}\right)=0$
$\left(x_{1}-r\right) x+y_{1}-r x_{1}=0$
slope $m_{T}=\frac{r-x_{1}}{y_{1}}=\frac{r-x}{y}$
(B)
$\frac{r-x}{y}=\frac{2 x r-2 x^{2}}{2 x y}$
$=\frac{x^{2}+y^{2}-2 x^{2}}{2 x y}=\frac{y^{2}-x^{2}}{2 x y}$
(C)
Q. 7 (A,C)

Point A is on the circle which is farthest from the
origin
$\therefore \quad$ Equation of tangent at A
$3 x+4 y=\lambda$
Applying $\mathrm{p}=\mathrm{r}$

$$
\left|\frac{9+16-\lambda}{5}\right|=3
$$

$$
\begin{array}{ll}
\Rightarrow & 25-\lambda= \pm 15 \\
\Rightarrow & \lambda=40 \text { or } 10
\end{array}
$$

Required tangent is $3 x+4 y=40$
Normal to the circle which is forthest from the origin is, straight line perpendicular to OA passing through the centre

$$
\therefore \quad 3 x+4 y-25=0
$$

Q. 8 (A,B,C)
$(x-3)^{2}+(y-a)^{2}=a^{2}-8$
Equation of director circle $(x-3)^{2}+(y-a)^{2}=2\left(a^{2}\right.$
-8)

$$
\begin{array}{ll}
\text { passes }(0,0), & 9+a^{2}=2 a^{2}-16 \\
\Rightarrow \quad & a^{2}=25 \Rightarrow a=-5,5 \\
\Rightarrow \quad S:(x-3)^{2}+(y-5)^{2}=17
\end{array}
$$

$$
\mathrm{OR}
$$

$$
(x-3)^{2}+(y+5)^{2}=17
$$

area of $\square \mathrm{OACB}=17$
chord of contact $\mathrm{AB}: \quad-3(x+0) \pm 5(\mathrm{y})+17=0$
$3 x \mp 5 y=17]$
Q. 9 (B,C)
\because Pair of tangents are perpendicular to each other
$\therefore \mathrm{PA}=$ radius $=5$
$A M=P A \sin 45^{\circ}=\frac{5}{\sqrt{2}}$

\therefore length of $\mathrm{AB}=5 \sqrt{2}$
area of quadrilateral $=2 \times$ area of $\triangle \mathrm{PAC}=2 \times \frac{1}{2} \times 5$
$\times 5=25$
Circumcircle of $\triangle \mathrm{PAB}$ will circle with PC as diameter
length of $\mathrm{PC}=5 \sqrt{2}$
\therefore radius $=\frac{5}{\sqrt{2}}$ Ans.]

Q. 10 (A,C)

$S_{1} \equiv x^{2}+y^{2}+6 x=0$
$\Rightarrow C_{1}(-3,0), r_{1}=3$
$S_{2} \equiv x^{2}+y^{2}-2 x=0$
$\Rightarrow C_{2}(1,0), r_{2}=1$
$\mathrm{C}_{1} \mathrm{C}_{2}=4$
$r_{1}+r_{2}=4$
$\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{r}_{1}+\mathrm{r}_{2}$
(A)
$S_{1} \& S_{2}$ touch each other externally

$\frac{\mathrm{PC}_{1}}{\mathrm{PC}_{2}}=\frac{3}{1}$
$\mathrm{PO}\left(\frac{(-3) 1-(1) 3}{1-3}, 0\right) \equiv \mathrm{P}(3,0)$
$\mathrm{OP}=3, \mathrm{OC}_{2}=1, \mathrm{C}_{2} \mathrm{P}=2$
In $\Delta \mathrm{C}_{2} \mathrm{NP} \Rightarrow \frac{1}{2}=\sin \theta \Rightarrow \theta=30^{\circ}$

$$
\begin{aligned}
& \frac{\mathrm{OA}}{\mathrm{OP}}=\tan 30^{\circ} \\
& \Rightarrow \mathrm{OA}=\frac{3}{\sqrt{3}} \Rightarrow \mathrm{OA}=\sqrt{3}
\end{aligned}
$$

Area of $\triangle \mathrm{PAB}=\frac{1}{2} \mathrm{AB} \times \mathrm{OP}$
$=\frac{1}{2} \times 2 \sqrt{3} \times 3=3 \sqrt{3}(\mathrm{C})$

Q. 11 (C, D)

Let circle
$x^{2}+y^{2}+2 g x+2 f y+c=0$
passing $(0,0) \&(1,0)$

$C=01+2 q=0 \Rightarrow g=-\frac{1}{2}$
Circle will be
$x^{2}+y^{2}-x+2 f y=0$
$\left(\frac{1}{2},-f\right), r_{1}=\sqrt{f^{2}+\frac{1}{4}}$
touches internally
$x^{2}+y^{2}=9,(0,0), r_{2}=3$
$\sqrt{\left(\frac{1}{2}\right)^{2}+\mathrm{f}^{2}}=\left|3-\sqrt{\mathrm{f}^{2}+\frac{1}{4}}\right|\left\{\because 3>\sqrt{\mathrm{f}^{2}+\frac{1}{4}}\right.$
$\frac{1}{4}+\mathrm{f}^{2}=\left(3-\sqrt{\mathrm{f}^{2}+\frac{1}{4}}\right)^{2}$
$\Rightarrow \frac{1}{4}+\mathrm{f}^{2}=9+\mathrm{f}^{2}+\frac{1}{4}-6 \sqrt{\mathrm{f}^{2}+\frac{1}{4}}$
$\Rightarrow \sqrt{f^{2}+\frac{1}{4}}=\frac{3}{2} \Rightarrow f^{2}+\frac{1}{4}=\frac{9}{4}$
$\Rightarrow \mathrm{f}^{2}=2 \Rightarrow \mathrm{f}= \pm \sqrt{2}$
Centres are $\left(\frac{1}{2}, \pm \sqrt{2}\right)$
Q. 12 (B,C,D)
$S_{1} \equiv x^{2}+y^{2}-4 x-6 y-12=0$
$\Rightarrow C_{1}(2,3), r=5$

Point $x^{2}-2 x-2=0$

$S_{2} \equiv x^{2}+y^{2}+6 x+4 y-12=0$
$C_{2}(-3,-2), r=5$
$\mathrm{L}=\mathrm{x}+\mathrm{y}=0$
$S_{1}-S_{2}=0$
$-10 x-10 y=0$
$\Rightarrow x+y=0$
(A) Origin inside both cirlce
(B) L is common chord
(C) L is radical Axis
(D) $\mathrm{m}_{\mathrm{C}_{1} \mathrm{C}_{2}}=\frac{5}{5}=1 \& \mathrm{~m}_{\mathrm{L}}=-1$

$$
\mathrm{C}_{1} \mathrm{C}_{2} \perp \mathrm{~L}
$$

Q. 13 (A,B,C)

$\because \quad$ Centre of $S_{1}=(5,0)$ and radius $r_{1}=3$
$\therefore \quad$ Centre of $S_{2}=(0,5)$ and radius $r_{2}=3$
and Centre of $S_{3}=(0,-5)$ and radius $r_{3}=3$
$\therefore \quad$ Radical centre of S_{1}, S_{2} and S_{3} will be (0,
0)

Length of tangent from $(0,0)$ upon S_{1} or S_{2} or $S_{3}=4$
$\therefore \quad$ Equation of S^{\prime} will be $\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=16$ and radius $=4$.
Q. 14 (A,B,C,D)

Equation of required circle is $S+\lambda S^{\prime}=0$,
where $S \equiv x^{2}+y^{2}+3 x+7 y+2 k-5=0$ and $S^{\prime} \equiv x^{2}$
$+y^{2}+2 x+2 y-k^{2}=0$.
As, it passes through $(1,1)$
So, the value of $\lambda=\frac{-(7+2 k)}{\left(6-k^{2}\right)}$.
If $7+2 \mathrm{k}=0$, it becomes second circle.
$\therefore \quad$ It is true for all values of k. Ans.]
Q. 15 (A, D)

Two fixed pts. are point of intersection of $x^{2}+y^{2}-2 x-2=0 \& y=0$

$$
(x-1)^{2}-3=0
$$

$$
\Rightarrow \mathrm{x}-1=\sqrt{3}, \mathrm{x}-1=-\sqrt{3}
$$

$$
(1+\sqrt{3}, 0)(1-\sqrt{3}, 0)
$$

Q. 16 (B,C)

C: $x^{2}+y^{2}+2 g x+2 f y+c=0$

$$
x^{2}+y^{2}=4
$$

$$
2\left(\mathrm{~g}_{1} \mathrm{~g}_{2}+\mathrm{f}_{1} \mathrm{f}_{2}\right)=\mathrm{C}_{1}+\mathrm{C}_{2}
$$

$$
2(0+0)=C-4 \Rightarrow C=4
$$

$$
\text { also } 2 x-2 y+9=0
$$

$$
2(-g)-2(-f)+9=0
$$

$$
2 \mathrm{f}=2 \mathrm{~g}-9
$$

$$
\therefore \quad x^{2}+y^{2}+2 g x+(2 g-9) y+4=0
$$

$$
\therefore \quad\left(x^{2}+y^{2}-9 y+4\right)+2 g(x+y)=0
$$

$$
\therefore \quad x^{2}+y^{2}-9 y+4=0 \text { and } x+y=0
$$

$$
\therefore \quad x^{2}+x^{2}+9 x+4=0 \Rightarrow 2 x^{2}+9 x+4=0 \Rightarrow
$$

$$
(2 x+1)(x+4)=0 \Rightarrow x=\frac{-1}{2},-4
$$

$$
\therefore \quad \text { Point }\left(\frac{-1}{2}, \frac{1}{2}\right),(-4,4) . \text { Ans.] }
$$

Comprehenssion \# 1 (Q. No. 17 to 19)

Q. 17 (D)
Q. 18 (A)
Q. 19 (C)

$$
r=\left|\frac{6-1}{\sqrt{10}}\right|=\frac{5}{\sqrt{10}}=\sqrt{\frac{5}{2}}
$$

Here $\sin \theta=\frac{r}{\sqrt{5}}=\frac{\sqrt{5}}{\sqrt{2} \cdot \sqrt{5}}=\frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& \theta=\frac{\pi}{4} \\
\therefore & \angle \mathrm{AOB}=90^{\circ}
\end{aligned}
$$

Hence 'O' lies on the director circle of $\mathrm{S}=0$.
$\therefore \quad$ equation of the director circle is

$$
(x-2)^{2}+(y+1)^{2}=\left(\frac{\sqrt{5}}{\sqrt{2}} \cdot \sqrt{2}\right)^{2}=5
$$

Equation of the other tangent $\mathrm{OB}=\mathrm{x}-3 \mathrm{y}=0$ Ans.(i)
Let the required circle, is
$x^{2}+y^{2}+\lambda(x+y)=0$
Also, $S=0$ is, $(x-2)^{2}+(y+1)^{2}=\frac{5}{2}$.

or, $\quad x^{2}+y^{2}-4 x+2 y+\frac{5}{2}=0$
Clearly, $\quad 2\left[\frac{\lambda}{2}(-2)+\frac{\lambda}{2}(1)\right]=0+\frac{5}{2} \Rightarrow-2 \lambda+$
$\lambda=\frac{5}{2} \Rightarrow \lambda=\frac{-5}{2} \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-\frac{5 \mathrm{x}}{2}-\frac{5 \mathrm{y}}{2}=0$
So, radius $=\sqrt{\frac{25}{16}+\frac{25}{16}}=\sqrt{\frac{50}{16}}=\frac{5 \sqrt{2}}{4}$.
Ans.(iii)]
Comprehenssion \# 2 (Q. No. 20 to 22)
Q. 20 (C)
Q. 21 (B)
Q. 22 (A)

Given $\quad 4 l^{2}-5 \mathrm{~m}^{2}+6 l+1=0$
$(l, \mathrm{~m} \in \mathrm{R})$
$\Rightarrow \quad(3 l+1)^{2}=5\left(l^{2}+\mathrm{m}^{2}\right)$
$\Rightarrow \quad \frac{|3 l+1|}{\sqrt{l^{2}+\mathrm{m}^{2}}}=\sqrt{5}$,

So, clearly the line $l x+m y+1=0$ is tangent to a fired cirlcle $S=0$
i.e.,

$$
(x-3)^{2}+(y-0)^{2}=(\sqrt{5})^{2}, \text { whose centre }
$$

is $(3,0)$ and $r=\sqrt{5}$
$\Rightarrow \quad$ Circle is $x^{2}+y^{2}-6 x+4=0$
(ii) Any point on line $x+y-1=0$ is $(t, 1-t), t \in R$.
\therefore The equation of chord of contact for the circle
(1) w.r.t. (t, $1-\mathrm{t})$ is

$$
\mathrm{tx}+(1-\mathrm{t}) \mathrm{y}-3(\mathrm{t}+\mathrm{x})+4=0
$$

i.e. $\quad t(x-y-3)+(-3 x+y+4)=0$, which
passes through $\left(\frac{1}{2}, \frac{-5}{2}\right)$
(iii) As line $x-2 y+c=0$ intersects the circle S orthogonally so the line must passes through centre of circle S.

$$
\Rightarrow \quad 3-2(0)+\mathrm{c}=0 \Rightarrow \mathrm{c}=-3
$$

Ans.

Alternative :

Let the required equation of circle S be

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+2 f y+c=0 \tag{1}
\end{equation*}
$$

As line

$$
\begin{equation*}
l x+m y+1=0 \tag{2}
\end{equation*}
$$

is tangent to circle (1), so

$$
\begin{aligned}
& \frac{|-\mathrm{g} l-\mathrm{mf}+1|}{\sqrt{l^{2}+\mathrm{m}^{2}}}=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}} \\
\Rightarrow \quad & (\mathrm{~g} l+\mathrm{mf}-1)^{2}=\left(l^{2}+\mathrm{m}^{2}\right)\left(\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}\right) \\
\Rightarrow \quad & \left(\mathrm{c}-\mathrm{f}^{2}\right) l^{2}+\left(\mathrm{c}-\mathrm{g}^{2}\right) \mathrm{m}^{2}-2 \mathrm{~g} \cdot l-2 \mathrm{f} \cdot \mathrm{~m}+2 \mathrm{gf}
\end{aligned}
$$

$$
\begin{equation*}
\cdot l \mathrm{~m}+1=0 \tag{3}
\end{equation*}
$$

But, we are given

$$
\begin{equation*}
4 l^{2}-5 \mathrm{~m}^{2}+6 l+1=0 \tag{4}
\end{equation*}
$$

\therefore On comparing (3) and (4), we get

$$
\begin{aligned}
& \frac{\mathrm{c}-\mathrm{f}^{2}}{4}=\frac{\mathrm{c}-\mathrm{g}^{2}}{-5}=\frac{-2 \mathrm{~g}}{6}=\frac{-2 \mathrm{f}}{0}=\frac{2 \mathrm{fg}}{0}=\frac{1}{1} \\
& \Rightarrow \quad \mathrm{~g}=-3, \mathrm{f}=0, \mathrm{c}=-5+\mathrm{g}^{2}=4 \\
& \Rightarrow \quad \text { The equation of fixed circles } x^{2}+y^{2}-6 x+ \\
& 4=0
\end{aligned}
$$

Comprehenssion \# 3 (Q. No. 23 to 25)

Q. 23 (D)
Q. 24 (D)
Q. 25

(D)

Given $f(x, y)=0$ is circle. As $f(0, y)$ has equal roots hence $f(x, y)=0$ touches the y-axis and as $f(x, 0)=0$ has two distinct real roots hence $f(x, y)=0$ cuts the x-axis in two distinct points. Hence $f(x, y)=0$ will be as shown
now, given $g(x, y)=x^{2}+y^{2}-5 x-4 y+c$
centre $=\left(\frac{5}{2}, 2\right) ; \quad$ radius $=\sqrt{\frac{25}{4}+4-\mathrm{c}}$

Note that radius of $g(x, y)=$ twice the radius of $f(x$, $y)=0$
but as it is clear from the adjacent figure $\mathrm{r}=\frac{5}{2}$

$\therefore \quad$ radius of $\mathrm{g}(\mathrm{x}, \mathrm{y})=5$
hence $\frac{25}{4}+4-\mathrm{c}=25 \Rightarrow \quad \mathrm{c}=-\frac{59}{4}$
$\therefore \quad$ equation of $\mathrm{g}(\mathrm{x}, \mathrm{y})$ is

$$
x^{2}+y^{2}-5 x-4 y-\frac{59}{4}=0
$$

$$
\begin{aligned}
& \text { equation of } \mathrm{f}(\mathrm{x}, \mathrm{y})=0 \\
& \left(\mathrm{x}-\frac{5}{2}\right)^{2}+(\mathrm{y}-2)^{2}=\frac{25}{4} \\
& \mathrm{y}=0,\left(\mathrm{x}-\frac{5}{2}\right)^{2}=\frac{25}{4}-4=\frac{9}{4} \\
& \mathrm{x}-\frac{5}{2}=\frac{3}{2} \text { or }-\frac{3}{2} \mathrm{P} x=4 \text { or } \mathrm{x}=1
\end{aligned}
$$

(a) Area of $\Delta \mathrm{QAB}=\frac{1}{2} \times 5 \times 5=\frac{25}{2}$
(b) $\quad \theta=\tan ^{-1} \frac{3}{4}$
$2 \theta=\tan ^{-1}\left(\frac{2\left(\frac{3}{4}\right)}{1-\frac{9}{16}}\right)=\tan ^{-1}\left(\frac{24}{7}\right)$

Area of region inside $f(x, y)=0$ above the x-axis is
x-axis $=\frac{1}{2}\left(\frac{5}{2}\right)^{2}\left(2 \pi-\tan ^{-1}\left(\frac{24}{7}\right)\right)+\frac{1}{2} \times 3 \times 2$

$=3+\frac{25}{8}\left(2 \pi-\tan ^{-1}\left(\frac{24}{7}\right)\right)$

(c) Points satisfying the conditions are
$(1,5)(1,6),(2,5),(2,6)(3,5),(3,6)$
$(4,5),(4,6),(5,4),(5,5),(5,6)$.
Q. 26
$(\mathrm{A}) \rightarrow(\mathrm{q})$,
$(B) \rightarrow(p)$,
$(C) \rightarrow(r)$,
(D) \rightarrow (s)
(A) $S_{1}-S_{2}=0$ is the required common chord i.e $2 x=$ a

Make homogeneous, we get $x^{2}+y^{2}-8.4 \frac{x^{2}}{a^{2}}=0$
As pair of lines substending angle of 90° at origin
\therefore coefficient of $\mathrm{x}^{2}+$ coefficient of $\mathrm{y}^{2}=0$
$\therefore \mathrm{a}= \pm 4$
(B) $y=22 \sqrt{3}(x-1)$ passes through centre $(1,0)$ of circle
(C) Three lines are parallel

(D) $2\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)=4$

$$
\begin{aligned}
& r_{1}+r_{2}=2 \\
& \frac{r_{1}+r_{2}}{2}=1
\end{aligned}
$$

Q. 27 (A) $\rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s})(\mathrm{B}) \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t})(\mathrm{C}) \rightarrow(\mathrm{r}, \mathrm{s})$
(A) Distance from centre $(0,10)$ to the line $(y-m x$ $=0$)
$=\frac{10}{\sqrt{\left(1+m^{2}\right)}} \geq$ radius
$=\sqrt{10}$ or $\frac{10}{\sqrt{\left(1+\mathrm{m}^{2}\right)}} \geq \sqrt{10}$
$\Rightarrow \sqrt{10} \geq \sqrt{1+\mathrm{m}^{2}}$
$\Rightarrow \mathrm{m}^{2} \leq 9$
$\therefore-3 \leq \mathrm{m} \leq 3$
Then $0 \leq|\mathrm{m}| \leq 3$
$\therefore|\mathrm{m}|=0,1,2,3(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s})$
(B) Distance from the centre $(2,4)$ to the line

$$
\begin{aligned}
& (3 x-4 y-5 k=0)=\frac{|6-16-5 k|}{5} \leq \text { radius }=5 \\
& \Rightarrow|10+5 k| \leq 25 \\
& \Rightarrow 0 \leq|2+\mathrm{k}| \leq 5 \\
\therefore & |2+\mathrm{k}|=0,1,2,3,4,5(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{~s}, \mathrm{t})
\end{aligned}
$$

(C) The given circles will cut orthogoally, if
$2\left(\frac{1}{2}\right)(-5)+2\left(\frac{\mathrm{p}}{2}\right)(\mathrm{p})=-7+1$
$\Rightarrow-5 \mathrm{p}+\mathrm{p}^{2}=-6$
$\Rightarrow \mathrm{p}^{2}-5 \mathrm{p}+6=0$
$\Rightarrow(\mathrm{p}-2)(\mathrm{p}-3)=0$
$\therefore \mathrm{p}=2,3(\mathrm{r}, \mathrm{s})$
Q. $28(\mathrm{~A}) \rightarrow(\mathrm{r})$,
(B) $\rightarrow(\mathrm{s})$,
$(\mathrm{C}) \rightarrow(\mathrm{p})$,
(D) \rightarrow (q)
(A) $\mathrm{C}_{1}(1,0)$,
$\mathrm{r}_{1}=1$ and $\mathrm{C}_{2}(-3,3)$,
$\mathrm{r}_{2}=4$
distance between centres C_{1} and $\mathrm{C}_{2}=\mathrm{d}=5$
$\mathrm{d}=\mathrm{r}_{1}+\mathrm{r}_{2}=5 \quad \Rightarrow 3$ common tangents
(B) $\mathrm{C}_{1}(2,5), \mathrm{r}_{1}=5$ and $\mathrm{C}_{2}(3,6), \mathrm{r}_{2}=10$
distance between centres C_{1} and $\mathrm{C}_{2}=\mathrm{d}=\sqrt{2}$
$\mathrm{d}<\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|$
\Rightarrow no common tangent
(C) $\mathrm{C}_{1}(1,2), \mathrm{r}_{1}=\sqrt{5}$ and $\mathrm{C}_{2}(0,4), \mathrm{r}_{2}=2 \sqrt{5}$
distance between centres C_{1} and $\mathrm{C}_{2}=\mathrm{d}=\sqrt{5}$
$\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|=\mathrm{d}$
number of common tangents is 1
(D) $\mathrm{C}_{1}(-1,4), \mathrm{r}_{1}=2$ and $\mathrm{C}_{2}(3,1), \mathrm{r}_{2}=2$ distance between centres C_{1} and $\mathrm{C}_{2}=\mathrm{d}=5$
$\mathrm{d}>\mathrm{r}_{1}+\mathrm{r}_{2}$
\Rightarrow number of direct common tangents is 2

NUMERICAL VALUE BASED

Q. 1 (1)

Let equation of circle is $(\mathrm{x}-\sqrt{2})^{2}+(\mathrm{y}-\sqrt{3})=\mathrm{r}^{2}$, $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are integer points on circle
$\left(x_{1}-\sqrt{2}\right)^{2}+\left(y_{1}-\sqrt{3}\right)^{2}=\left(x_{2}-\sqrt{2}\right)^{2}+\left(y_{2}-\sqrt{3}\right)^{2}$
$=\mathrm{r}^{2}$
$\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{2}+\mathrm{x}_{1}-2 \sqrt{2}\right)+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)\left(\mathrm{y}_{2}+\mathrm{y}_{1}-2 \sqrt{3}\right)$
$=0$
$\left(x_{2}{ }^{2}-x_{1}{ }^{2}\right)+\left(y_{2}{ }^{2}-y_{1}{ }^{2}\right)=2 \sqrt{3}\left(y_{2}-y_{1}\right)+2 \sqrt{2}\left(x_{2}-\right.$
$\left.\mathrm{x}_{1}\right) \quad \mathrm{A}=\sqrt{3} \mathrm{~B}+\sqrt{2} \mathrm{C}$
Therefore $\mathrm{A}=\mathrm{B}=\mathrm{C}=0$

$$
x_{1}=x_{2} \& y_{1}=y_{2}
$$

So, no distinct points are possible.
Q. 2 (49)
$x^{2}+y^{2}-5 x+2 y-5=0$
$\Rightarrow \quad\left(x-\frac{5}{2}\right)^{2}+(y+1)^{2}-5-\frac{25}{4}-1=0$
$\Rightarrow \quad\left(x-\frac{5}{2}\right)^{2}+(y+1)^{2}=\frac{49}{4}$
$\Rightarrow \quad$ So the axes are shifted to $\left(\frac{5}{2},-1\right)$

New equation of circle must be $x^{2}+y^{2}=\frac{49}{4}$

Q. 3 (4)

Four circles
\{one incircle \& three excircles \}

Q. 4

Equation of circum circle of triangle $O A B x^{2}+y^{2}$
$-a x-b y=0$.
Equation of tangent at origin $a x+b y=0$.
$\mathrm{d}_{1}=\frac{\left|\mathrm{a}^{2}\right|}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$ and $\mathrm{d}_{2}=\frac{\left|\mathrm{b}^{2}\right|}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$
$\Rightarrow \quad d_{1}+d_{2}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=$ diameter
Q. 5 (8)
$x^{2}+y^{2}-4 x+3=0$
$\sqrt{x^{2}+y^{2}}$ represents distance of p from origin
Hence $\mathrm{M}=3^{2}+0^{2}$

$\mathrm{M}=1^{2}+0^{2}$
$\mathrm{M}-\mathrm{m}=8$
Q. 6 (13)

Q. 7 (1)

$$
\left|\frac{-1-0+c}{\sqrt{2}}\right|=\sqrt{2} \Rightarrow c-1= \pm 2 \Rightarrow c=-1,3
$$

But $\mathrm{c}=-1$ common point is one $\mathrm{c}=3$ common point is infinite

Hence $c=-1$ is Answer.
Q. 8 (8)

Area of $\mathrm{ABCD}=4\left(\frac{1}{2} \cdot 2 \cdot 2 \sqrt{3}\right)$.
Q. 9 (16)
$\mathrm{C}_{1} \mathrm{C}_{2}=\sqrt{80}$
Area $=\frac{1}{2} \times 4 \times 8=\frac{1}{2} \times \sqrt{80} \times \frac{\ell}{2}$

Q. 10 (75)

Given circle $x^{2}+y^{2}-2 x-4 y-20=0$
Tangents at $B(1,7)$ is
$x+7 y-(x+1)-2(y+7)-20=0$
$5 y-35=0 \Rightarrow y=7$

at $\mathrm{D}(4,-2)$
$4 x-2 y-(x+4)-2(y-2)-20=0$
$3 x-4 y=20$
Hence c(16, 7)
Area of quadrilateral $\mathrm{ABCD}=\mathrm{AB} \times \mathrm{BC}=5 \times 15=75$ square units.
Q. 11 (0)

Let $S_{1}: x^{2}+y^{2}+2 a x+c y+a=0$
$S_{1}: x^{2}+y^{2}-3 a x+d y-1=0$
common chord $S_{1}-S_{2}=0 \Rightarrow 5 \mathrm{ax}+\mathrm{y}(\mathrm{c}-\mathrm{d})+(\mathrm{a}+1)$
$=0$
given line is $5 \mathrm{x}+\mathrm{by}-\mathrm{a}=0$
compare both $\frac{5 a}{5}=\frac{c-d}{b}=\frac{a+1}{-a}$
$\Rightarrow \quad a=\frac{c-d}{b}=-1-\frac{1}{a}$
(i) (ii)
(iii)

From (i) \& (iii) $a^{2}+a+1=0$ $\Rightarrow \mathrm{a}=\omega, \omega^{2}$ no real a .

Q. 12 (15)

area $\mathrm{ABCD}=900 \sqrt{2}$ sq. units
$\mathrm{ON}=\mathrm{ND}=\mathrm{NA}=\mathrm{a}$ (let)
area $\triangle \mathrm{OAD}=\mathrm{a}^{2}$
$\mathrm{OD}=\mathrm{OA}=\sqrt{2} \mathrm{a}$
$\mathrm{OP}=\sqrt{2} \mathrm{a}-\mathrm{a}$
$=\mathrm{a}(\sqrt{2}-1)=$ radius

$\mathrm{OM}=\mathrm{ON}-2 \mathrm{r}$
$=\mathrm{a}-2 \mathrm{a}(\sqrt{2}-1)=\mathrm{a}(3-2 \sqrt{2})$
area $\Delta \mathrm{OBC}=(\mathrm{OH})^{2}=\mathrm{a}^{2}(3-2 \sqrt{2})^{2}$
$\mathrm{a}^{2}-\mathrm{a}^{2}(3-2 \sqrt{2})=900 \sqrt{2}$
$\Rightarrow \mathrm{a}^{2}\left[1-(3-2 \sqrt{2})^{2}\right]=900 \sqrt{2}$
$\Rightarrow \mathrm{a}^{2}=\frac{900 \sqrt{2}}{(1+3-2 \sqrt{2})(1-3+2 \sqrt{2})}$
$\Rightarrow=\frac{900 \sqrt{2}}{2 \sqrt{2}(\sqrt{2}-1) 2(\sqrt{2}-1)}$
$\Rightarrow \mathrm{a}^{2}=\frac{225}{(\sqrt{2}-1)^{2}} \Rightarrow \mathrm{a}=\frac{15}{(\sqrt{2}-1)}$
$\Rightarrow \mathrm{a}(\sqrt{2}-1)=15=\mathrm{r}$
Q. 13 (10)
$y=x+10$
$y=x-6$
$2 \mathrm{r}=2 \mathrm{~h}=\frac{10+6}{\sqrt{2}}=\frac{16}{\sqrt{2}}=8 \sqrt{2}$
$2 \mathrm{~h}=8 \sqrt{2}$

$h=4 \sqrt{2}$
\perp distance equal to $\mathrm{h}=4 \sqrt{2}$ from $(4 \sqrt{2}, \mathrm{k})$
$4 \sqrt{2}=\frac{|4 \sqrt{2}-k+10|}{\sqrt{1^{2}+1^{2}}} \Rightarrow 8=|4 \sqrt{2}-k+10|$
\{geometrically $\mathrm{k}<10$ \}

$$
\begin{array}{rlr}
8 & =4 \sqrt{2}-k+10 & \\
& k=10-8+4 \sqrt{2} & \\
& k=2+4 \sqrt{2} & \\
& h+k=2+8 \sqrt{2} & \\
& h+k=2+8 \sqrt{2} & \\
& =a+b \sqrt{2} & a=2, b=8 \\
\therefore \quad & a+b=10 &
\end{array}
$$

Q. 14 (400)

$\mathrm{BD}=\mathrm{r}_{2}$
$\mathrm{AC}=\mathrm{r}_{1}$
$r_{1}-r_{2}=10$
$\Rightarrow\left(r_{1}-r_{2}\right)^{2}-2 r_{1} r_{2}=100$
$\Rightarrow 2 \mathrm{r}_{1} \mathrm{r}_{2}=400-100$

Q. 2
$\frac{r_{1} r_{2}}{2}=\frac{300}{4}=75$ sq. units

In $\triangle \mathrm{OAB}$
$\left(\frac{r_{1}}{2}\right)^{2}+\left(\frac{r_{2}}{2}\right)^{2}=10^{2}$
$r_{1}^{2}+r_{2}^{2}=400$
Q. 15 (19)
$r_{1}=4, r_{2}=10$
$r_{3}=\frac{2\left(r_{1}+r_{2}\right)}{2}$

$r_{3}=14$
In $\Delta \mathrm{O}_{3} \mathrm{MP}$
$\mathrm{O}_{3} \mathrm{M}=6$
$P M=\sqrt{14^{2}-6^{2}}=\sqrt{160}=4 \sqrt{10}$
$P Q=2 P M$
$=\frac{8 \sqrt{10}}{1}=\frac{m \sqrt{n}}{p}$
$\Rightarrow \mathrm{m}+\mathrm{n}+\mathrm{p}=8+10+1=19$
KVPY
PREVIOUS YEAR'S
Q. 1 (A)

$\sin 60^{\circ}=\frac{\mathrm{AD}}{2}$
$\mathrm{AD}=2 \sin 60^{\circ}=\frac{2 \sqrt{3}}{2}=\sqrt{3}$
$\mathrm{d}=1+\mathrm{AD}+1$
$\mathrm{d}=2+\sqrt{3}$

Slant height $=13$
$\theta=\frac{\mathrm{S}}{\mathrm{r}}$
$\Rightarrow \mathrm{S}=\mathrm{r} \theta$
$\Rightarrow 2 \pi(5)=13 \theta$
$\Rightarrow \theta=\frac{10 \pi}{13}$
Q. 3 (B)

Say the radius of smaller circle is x
Here $\mathrm{OP}=\mathrm{x} \operatorname{cosec} 30^{\circ}$
while $\mathrm{OQ}=\mathrm{r}=\mathrm{x}+\mathrm{x} \operatorname{cosec} 30^{\circ}$
$x=\frac{r}{3}$
Q. 4 (A)

We want to find here angle between minute hand and hour hand at $6: 15$

Hour hand covers 30° in 60 minute.
Then in 15 minute it covers $=7.5^{\circ}$
So angle between both hand at $6: 15$ is $90^{\circ}+7.5=$
97.5° Another angle is $360^{\circ}-97.5^{\circ}=262.5^{\circ}$
Hence difference is $262.5^{\circ}-97.5^{\circ}=165^{\circ}$
Q. 5 (3)
$(x-3)^{2}+(y-p)^{2}=9-17+p^{2}$
Director circle is
$(x-3)^{2}+(y-p)^{2}=2\left(p^{2}-8\right)$
Passes through (0,0)
$9+\mathrm{p}^{2}=2 \mathrm{p}^{2}-16$
$\mathrm{p}^{2}=25 \Rightarrow \mathrm{p}= \pm 5 \geq|\mathrm{p}|=5$
Q. 6
(B)
$2 \sqrt{\mathrm{~g}^{2}-\mathrm{c}}=\mathrm{a}$
$2 \sqrt{\mathrm{f}^{2}-\mathrm{c}}=\mathrm{b}$

Polar coordinates of centre of circle be $(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)$

$$
g=-r \cos \theta \text { and } g^{2}-f^{2}=\frac{a^{2}-b^{2}}{4}
$$

Q. 7 (B)

$$
\begin{aligned}
& \theta=\frac{2 \pi}{40} \times 15=2 \pi-\frac{2 \pi}{\mathrm{n}} \times 15 \\
& \therefore \frac{3}{8}=1-\frac{15}{\mathrm{n}} \\
& \Rightarrow \mathrm{n}=24
\end{aligned}
$$

Q. 8 (C)

$$
\begin{aligned}
& \angle \mathrm{BCH}=45^{\circ}=\angle \mathrm{BCA}_{1} \\
& \angle \mathrm{C}_{1} \mathrm{CA}_{1}=\angle \mathrm{C}_{1} \mathrm{~B}_{1} \mathrm{~A}_{1}=90^{\circ}
\end{aligned}
$$

(C)

In $\triangle \mathrm{RCP} \Rightarrow \cos \theta=\frac{4}{5}$

$$
\text { In } \Delta \mathrm{PCO} \Rightarrow \cos \theta=\frac{3}{\mathrm{r}}
$$

Q. 10 (B)

Required area $=\frac{\pi\left(\frac{1}{2}\right)^{2}}{2}-\left(\frac{60^{\circ}}{360^{\circ}} \times \pi(1)^{2}-\frac{\sqrt{3}}{4} \times 1^{2}\right)$

$$
=\frac{\pi}{8}-\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right)=\frac{\sqrt{3}}{4}-\frac{\pi}{24}
$$

Q. 11 (C)

$\mathrm{AR}=\mathrm{PR}=10-\mathrm{x}$
$P Q=10-2 x$
$\mathrm{AB}=\mathrm{CD}=10$
$C D=C S+S D=y+S D$
$=y+S P+P Q$
$10=y+y+10-2 x$
$\Rightarrow \mathrm{y}=\mathrm{x}$
Now RS $=\mathrm{SP}+\mathrm{PQ}+\mathrm{QR}$
$=y+10-2 x+x$
$=10+y-x=10$
Q. 12 (B)
$x^{2}+y^{2}=1$
$\mathrm{L}_{\mathrm{t}}: \frac{\mathrm{x}}{\mathrm{t}}+\frac{\mathrm{y}}{1}=1$
$y=1-\frac{x}{t}$
$\mathrm{x}^{2}+1+\frac{\mathrm{x}^{2}}{\mathrm{t}^{2}}-\frac{2 \mathrm{x}}{\mathrm{t}}=1$
$\mathrm{x}^{2}\left(1+\frac{1}{\mathrm{t}^{2}}\right)-\frac{2 \mathrm{x}}{\mathrm{t}}=0$
$x=0$,
$y=1$
$(0,1)$
$1 \leq \mathrm{t} \leq 1+\sqrt{2} \quad \mathrm{t}=\tan \theta \quad \mathrm{Q}_{\mathrm{t}}(\sin 2 \theta,-\cos 2 \theta)$
$\theta \in\left(45^{\circ}, 67 \frac{1^{\circ}}{2}\right) \quad$ lies on circle C

so angle at centre $=\frac{\pi}{4}$
Q. 13 (D)

$\tan \theta=\frac{2 \tan \theta / 2}{1-\tan ^{2} \theta / 2}$
$2 \sqrt{2}=\frac{2 \tan \theta / 2}{1-\tan ^{2} \theta / 2}$
$\sqrt{2} \tan ^{2} \theta / 2+\tan \theta-\sqrt{2}=0$
$\tan \theta / 2=\frac{-1 \pm \sqrt{1+8}}{2 \sqrt{2}}$
$=\frac{-1 \pm 3}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}$ or $-\sqrt{2}$
$\therefore \tan \theta / 2=\frac{1}{\sqrt{2}}$

In $\triangle O M N \sin \frac{\theta}{2}=\frac{r_{1}}{O N} \quad \sin \frac{\theta}{2}=\frac{1}{\sqrt{3}}$
$\mathrm{ON}=\sqrt{3} \mathrm{r}_{1}$
In $\triangle \mathrm{OPQ} \sin \frac{\theta}{2}=\frac{\mathrm{r}_{2}}{\mathrm{ON}+\mathrm{r}_{1}+\mathrm{r}_{2}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{r}_{2}}{\sqrt{3} \mathrm{r}_{1}+\mathrm{r}_{1}+\mathrm{r}_{2}}$ $\sqrt{3} \mathrm{r}_{1}+\mathrm{r}_{1}+\mathrm{r}_{2}=\sqrt{3} \mathrm{r}_{2}$
$r_{1}(\sqrt{3}+1)=r_{2}(\sqrt{3}-1)$
$\frac{r_{2}}{r_{1}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}=\frac{(\sqrt{3}+1)^{2}}{2}=2+\sqrt{3}$
Q. 14 (D)

$$
\sum_{i=0}^{\infty} \operatorname{Area}\left(\mathrm{C}_{\mathrm{i}}\right)=\pi \mathrm{r}_{0}^{2}+\pi \mathrm{r}_{1}^{2}+\pi \mathrm{r}_{2}^{2}+\pi \mathrm{r}_{3}^{2}+\ldots . \infty
$$

Area of $\mathrm{C}_{\mathrm{n}}=\pi \mathrm{r}_{\mathrm{n}}{ }^{2}=\left(\sqrt{2} \mathrm{r}_{\mathrm{n}-1}\right)^{2}$

$$
\mathrm{r}_{\mathrm{n}}^{2}=\frac{2}{\pi} \mathrm{r}_{\mathrm{n}-1}^{2}
$$

$$
\begin{aligned}
& \text { so } \mathrm{r}_{1}^{2}=\frac{2}{\pi} \mathrm{r}_{0}^{2}, \mathrm{r}_{2}{ }^{2}=\frac{2}{\pi} \mathrm{r}_{1}{ }^{2} \\
& =\frac{2}{\pi}\left(\frac{2}{\pi} \mathrm{r}_{0}{ }^{2}\right) \\
& \mathrm{r}_{2}{ }^{3}=\frac{2}{\pi}\left(\mathrm{r}_{2}{ }^{2}\right)=\frac{2}{\pi}\left(\frac{2}{\pi} \frac{2}{\pi} \mathrm{r}_{0}{ }^{2}\right)
\end{aligned}
$$

$$
\text { So } \sum_{\mathrm{i}=0}^{\infty} \operatorname{Area}\left(\mathrm{C}_{\mathrm{i}}\right)=\pi\left[\mathrm{r}_{0}{ }^{2}+\frac{2}{\pi} \mathrm{r}_{0}{ }^{2}+\frac{2}{\pi} \cdot \frac{2}{\pi} \mathrm{r}_{0}{ }^{2} \ldots \infty\right]
$$

$$
=\frac{\pi \mathrm{r}_{0}^{2}}{1-\frac{2}{\pi}}=\frac{\pi^{2} \mathrm{r}_{0}^{2}}{\pi-2} \forall \mathrm{r}_{0}=1=\frac{\pi^{2}}{\pi-2}
$$

Q. 15 (4)

Let O be centre of circle.
$\mathrm{OM}=$ radius $=\mathrm{r}$
$\therefore \mathrm{r}^{2}=(1-\mathrm{r})^{2}+\left(\frac{1}{2}\right)^{2}$
$\Rightarrow 2 r-1=\frac{1}{4} \Rightarrow 2 r=\frac{5}{4}$
$\Rightarrow \quad \mathrm{r}=\frac{5}{8}$

Chose AB subtend 90° at centre.
so that AB subtend 45° at O (circumference of circle)
Q. 17 (B)

Sphere $x^{2}+y^{2}+z^{2}-4 x-6 x-12 z+48=0$
Centre (2, 3, 6)
radius $=\sqrt{4+9+36-48}=1$
distance between centre and origin $=\sqrt{4+9+36}=7$ shortest distance $=7-1=6$ (Origin lies outside the sphere)
Q. 18 (B)

From the figure

$$
\sin \theta=\frac{1}{2 \mathrm{r}} \& \sin \alpha=\frac{1}{\mathrm{r}}
$$

$3 \times(2 \theta)+(2 \alpha) \times 3=360^{\circ}$
$\theta+\alpha=60^{\circ}$
Now, $\cos (\theta+\alpha)=\frac{1}{2}$
$\Rightarrow \cos \theta \cdot \cos \alpha-\sin \theta \cdot \sin \alpha=\frac{1}{2}$
$\Rightarrow \sqrt{1-\frac{1}{4 \mathrm{r}^{2}}} \sqrt{1-\frac{1}{\mathrm{r}^{2}}}-\frac{1}{2 \mathrm{r}} \cdot \frac{1}{\mathrm{r}}=\frac{1}{2}$
$\Rightarrow \sqrt{4 \mathrm{r}^{2}-1} \sqrt{\mathrm{r}^{2}-1}-1=\mathrm{r}^{2}$
$\Rightarrow\left(4 r^{2}-1\right)\left(r^{2}-1\right)=\left(r^{2}+1\right)^{2}$
$\Rightarrow 4 \mathrm{r}^{4}-5 \mathrm{r}^{2}+1=\mathrm{r}^{4}+2 \mathrm{r}^{2}+1$
$\Rightarrow 3 \mathrm{r}^{4}=7 \mathrm{r}^{2}$

$$
\Rightarrow \mathrm{r}^{2}=\frac{7}{3} \Rightarrow \mathrm{r}=\sqrt{\frac{7}{3}}
$$

Q. 19 (2)

Q. 20 (A)
circle is $x^{2}+y^{2}=1$
$\mathrm{y}= \pm \sqrt{1-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}} \quad\left(\because \mathrm{x}=\frac{\mathrm{a}}{\mathrm{b}}\right)$
$\mathrm{y}= \pm \frac{1}{6} \cdot \sqrt{\mathrm{~b}^{2}-\mathrm{a}^{2}}$
As y is retional so
$\begin{array}{cc}\mathrm{b}^{2}-\mathrm{a}^{2}= & \mathrm{p}^{2} \\ \downarrow \quad \downarrow \quad \downarrow\end{array}$
even odd odd
$\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{p}^{2}$
$=(2 \mathrm{k}+1)^{2}+(2 \lambda+1)^{2}$
$=4 \mathrm{k}^{2}+4 \mathrm{k}+1+4 \lambda^{2}+4 \lambda+1$
$\mathrm{b}^{2}=4\left(\mathrm{k}^{2}+\lambda^{2}+\mathrm{k}+\lambda\right)+2$ impossible
as L.H.S is multiple of 4 but R.H.S is not multiple of 4
Q. 21 (C)

Let two circles are
$x^{2}+y^{2}=4 \&(x-2 \sqrt{3})^{2}+y^{2}=4$
\therefore equation of common chord is $\mathrm{x}=\sqrt{3}$

$\therefore \mathrm{A}(\sqrt{3}, 1), \mathrm{B}(\sqrt{3},-1)$
So $\angle A C_{1} B=60^{\circ}$
$\mathrm{AB}=2 \quad \& \quad \mathrm{MC}_{1}=\sqrt{3}$
Required area $=2\left[\right.$ area of sector $\left.\mathrm{C}_{1} \mathrm{AB}-\operatorname{ar} \Delta \mathrm{C}_{1} \mathrm{AB}\right]$

$$
\begin{gathered}
=2\left[\frac{1}{2} \times 2^{2} \times \frac{\pi}{3}-\frac{1}{2} \times 2 \times \sqrt{3}\right] \\
=.723
\end{gathered}
$$

Q. 22 (A)

$B M=A_{1} M=1$
$\mathrm{A}_{1} \mathrm{~A}_{2}=1$
$\mathrm{A}_{2} \mathrm{~N}=\mathrm{A}_{3} \mathrm{~N}=\frac{1}{2}$
Let radius of C_{1} is r_{1}
Let radius of C_{2} is r_{2}
$\mathrm{PM}=\sqrt{\mathrm{r}_{1}^{2}-1}, \mathrm{QN}=\sqrt{\mathrm{r}_{2}^{2}-\frac{1}{4}}$
$\because \Delta \mathrm{QNB} \sim \Delta \mathrm{PMB}$
$\therefore \frac{\sqrt{\mathrm{r}_{2}^{2}-\frac{1}{4}}}{\sqrt{\mathrm{r}_{1}^{2}-1}}=\frac{\mathrm{BN}}{\mathrm{BM}}=\frac{7 / 2}{1}$
$\Rightarrow 4 \mathrm{r}_{2}^{2}=49 \mathrm{r}_{1}^{2}-48$
Also, in $\triangle \mathrm{QNB}$
$\mathrm{BQ}^{2}=\mathrm{BN}^{2}+\mathrm{NQ}^{2}$
$\left(2 r_{1}+r_{2}\right)^{2}=\frac{49}{4}+r_{2}^{2}-\frac{1}{4}$
$\Rightarrow \mathrm{r}_{1}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}=3$
.......(ii)
Solve (i) \& (ii)
$r_{1}=\sqrt{\frac{6}{5}}=\frac{\sqrt{30}}{5} \& r_{2}=\frac{3 \sqrt{30}}{10}$
Q. 23 (A)

Required equation of circle
$(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{h})^{2}=\mathrm{h}^{2}$
Both circle touch internally
$\mathrm{C}_{1} \mathrm{C}_{2}=\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|$
$\sqrt{\mathrm{h}^{2}+\mathrm{h}^{2}}=|\mathrm{h}-1|$
Solve this $h=\sqrt{2}-1$
Area $\pi(\sqrt{2}-1)^{2}=\pi(3-2 \sqrt{2})$
Q. 24 (D)

Let $\mathrm{a}^{2}=\mathrm{m} \& \mathrm{~b}^{2}=\mathrm{N}$ then $\mathrm{m}>0$ and $\mathrm{N}>0$
Now given condition is $\mathrm{M}+\mathrm{N}>1$ and $\mathrm{M}^{2}+\mathrm{N}^{2}<1$

(MN) lies inside circle $\mathrm{x}^{2}+\mathrm{y}^{2}<1$ and above line $\mathrm{x}+\mathrm{y}>$ 1
$\Rightarrow(\mathrm{M}, \mathrm{N})$ lies in shaded region and number of points in shaded region are infinite, so number of pair (a, b) are also infinite.

Q. 25 (D)

Q. 26 (B)

Equation of tangent at $M, x \cos \theta+y \sin \theta=r$ put $X=r$, to get y-coordinate of point P. $r \cos \theta+y \sin \theta=r$
$\Rightarrow y=\frac{1(1-\cos \theta)}{\sin \theta}=\frac{r \cdot 2 \cdot \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}=r \tan \frac{\theta}{2}$
$\therefore \quad \mathrm{P} \equiv\left(\mathrm{r}, \quad \mathrm{r} \tan \frac{\theta}{2}\right)$
$\therefore \quad \mathrm{Q}$ has y - coodinate same as point P
$\therefore K=r \tan \frac{\theta}{2} \quad \Rightarrow \tan \frac{\theta}{2}=\frac{K}{r}$
Slope of tangent at $\mathrm{M}=-\cot \theta$
Slope of $\mathrm{OQ}=\frac{\mathrm{K}}{\mathrm{h}}$

$$
\begin{aligned}
& \therefore \frac{\mathrm{K}}{\mathrm{~h}},(-\cot \theta)=-1 \Rightarrow \tan \theta=\frac{\mathrm{K}}{\mathrm{~h}} \\
& \Rightarrow \frac{2 \tan \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}=\frac{\mathrm{K}}{\mathrm{~h}} \Rightarrow \frac{2 \cdot \frac{\mathrm{~K}}{\mathrm{r}}}{1-\frac{\mathrm{K}^{2}}{\mathrm{r}^{2}}}=\frac{\mathrm{K}}{\mathrm{~h}} \\
& \Rightarrow \frac{2 \mathrm{~h}}{\mathrm{r}}=1-\frac{\mathrm{K}^{2}}{\mathrm{r}^{2}} \Rightarrow \frac{2 \mathrm{~h}}{\mathrm{r}}=\frac{\mathrm{r}^{2}-\mathrm{K}^{2}}{\mathrm{r}^{2}} \\
& \Rightarrow 2 \mathrm{hr}=\mathrm{r}^{2}-\mathrm{K}^{2} \\
& \Rightarrow \mathrm{y}^{2}=\mathrm{r}^{2}-2 \mathrm{Kr} \\
& \therefore \mathrm{y}^{2}=2 \mathrm{r}(\mathrm{x}-\mathrm{r} / 2) \\
& \therefore \text { Parabola }
\end{aligned}
$$

Q. 27 (A)
$\tan \theta=$ slope of $\mathrm{FE}=3$

$$
\Rightarrow \cos \theta=\frac{1}{\sqrt{10}} \Rightarrow \sin \left(90^{\circ}-\theta\right)=\frac{1}{\sqrt{10}}
$$

Q. 28 (B)

$\frac{1}{2} \times \frac{\sqrt{5}}{2} \times \mathrm{r}=\frac{1}{2} \times 1 \times \frac{1}{2}$
$\Rightarrow r=\frac{1}{\sqrt{5}}$
Q. 29 (B)
$\mathrm{BC}=\sqrt{\mathrm{x}^{2}-1}, \mathrm{AD}=\sqrt{\mathrm{x}^{2}-9}$

by Ptolemy's theorem
$\mathrm{AB} \cdot \mathrm{CD}+\mathrm{AC} \cdot \mathrm{BD}=\mathrm{AD} \cdot \mathrm{BC}$
$\Rightarrow 2 \mathrm{x}+3=\sqrt{\mathrm{x}^{2}-9} \sqrt{\mathrm{x}^{2}-1}$
$\Rightarrow 4 \mathrm{x}^{2}+12 \mathrm{x}+9=\mathrm{x}^{4}-10 \mathrm{x}^{2}+9$
$\Rightarrow \mathrm{x}^{4}-14 \mathrm{x}^{2}-12 \mathrm{x}=0 \Rightarrow \mathrm{x}^{3}-14 \mathrm{x}-12=0$
Let $f(x)=x^{3}-14 x-12$
$\Rightarrow f^{\prime}(x)=3 x^{2}-14 \quad \Rightarrow f(x)$ has only one
positive root $\in\left(0, \sqrt{\frac{14}{3}}\right)$
$\mathrm{f}(4,1)<0$ and $\mathrm{f}(4,2)>0 \quad \Rightarrow \mathrm{x} \in(4.1,4.2)$
Q. 30 (A)

Area $(\mathrm{C})=\pi\left(\frac{\ell}{2 \pi}\right)^{2}=\frac{\ell^{2}}{4 \pi}$

$$
\operatorname{Area}(\mathrm{T}) \leq \frac{\sqrt{3}}{4}\left(\frac{\ell}{3}\right)^{2}=\frac{\ell^{2}}{12 \sqrt{3}} \Rightarrow(\mathrm{~A})
$$

Hence $\frac{\operatorname{Area}(\mathrm{c})}{\operatorname{Area}(\tau)} \geq \frac{3 \sqrt{3}}{\pi}$
Q. 31 (D)

Let O be the centre of the circle In $\triangle \mathrm{OAB}$
$\mathrm{AB}=\sqrt{2} \mathrm{r}$ and $\mathrm{r}=1$
$\Rightarrow \mathrm{AB}=\sqrt{2}$
Q. 32 (D)

$\mathrm{AE}=\mathrm{BE}=\mathrm{CE}=\mathrm{DE}$
$\angle \mathrm{DAB}, \angle \mathrm{ABC}, \angle \mathrm{BCD} \rightarrow \mathrm{AP}$
Let $\angle \mathrm{DAB}=\mathrm{a}$
$\angle A B C=a+d$
$\angle \mathrm{BCD}=\mathrm{a}+2 \mathrm{~d}$
Since $\mathrm{AE}=\mathrm{BE}=\mathrm{CE}=\mathrm{DE}$ so ABCD is cyclic quadrilateral
Hence $\angle \mathrm{DAB}+\angle \mathrm{DCB}=180^{\circ}$
$2 \mathrm{a}+2 \mathrm{~d}=180^{\circ} \Rightarrow \mathrm{a}+\mathrm{d}=90^{\circ}$
so median of $\{a, a+d, a+2 d\}$ is $a+d=90^{\circ}$

Q. 33 (D)

JEE MIAN

PREVIOUS YEAR'S

Q. $1 \quad 56.25$

Internal point which divide $(5,0) \&(-5,0)$ in the ratio $3: 1$ is $\left(\frac{-5}{2}, 0\right)$ External point which divide $(5,0) \&$ $(-5,0)$ in the ratio $3: 1$ is $(-10,0)$
$2 \mathrm{r}=\left(\frac{-5}{2}+10\right)=\frac{15}{2}=7.5$
$(2 \mathrm{r})^{2}=56.25$
Q. $2 \quad 41.568$

Let O be mid-point of $A D$, now perpendicular from C to BC bisects chord $\mathrm{BC},(\triangle \mathrm{ACE}$ and $\triangle \mathrm{ABE}$ are congruent).
Hence $A D$ is diameter and O is centre of circle.

So $\mathrm{BE}=\sqrt{(6.5)^{2}-(5.5)^{2}}$
$=\sqrt{12}$
Hencce are $=\frac{1}{2} \cdot 12.2 \sqrt{12}=24 \sqrt{3}$
Q. 3 (2)

$\therefore \mathrm{P} \equiv(2 \mathrm{~h}-3,2 \mathrm{k}-2) \rightarrow \mathrm{on}$ circle
$\therefore\left(\mathrm{h}-\frac{3}{2}\right)^{2}+(\mathrm{k}-1)^{2}=\frac{1}{4}$
\Rightarrow radius $=\frac{1}{2}$
Q. 4

$\therefore \mathrm{PA}^{2}=\cos ^{2} \theta+(\sin \theta-3)^{2}=10-6 \sin \theta$
$\mathrm{PB}^{2}=\cos ^{2} \theta+(\sin \theta-6)^{2}=37-12 \sin \theta$
$\mathrm{PA}^{2}+\mathrm{PB}^{2}=47-\left.18 \sin \theta\right|_{\max } \Rightarrow \theta=\frac{3 \pi}{2}$
$\therefore \mathrm{P}, \mathrm{A}, \mathrm{B}$ lie on a line $\mathrm{x}=1$
(3)

distance between $(1,3)$ and $(2,1)$ is $\sqrt{5}$
$\therefore(\sqrt{5})^{2}+(2)^{2}=\mathrm{r}^{2}$
$\Rightarrow \mathrm{r}=3$
Q. 6

$\mathrm{OD}=\mathrm{r} \cos 60^{\circ}=\frac{\mathrm{r}}{2}$
Height $=A D=\frac{3 r}{2}$
Now $\sin 60^{\circ}=\frac{3 \frac{\mathrm{r}}{2}}{\mathrm{AB}}$
$\Rightarrow A B=\sqrt{3} r$
Q. 7 (1)

Here $\mathrm{AO}+\mathrm{OD}=1$ or $(\sqrt{2}+1) \mathrm{r}=1$
$\Rightarrow \mathrm{r}=\sqrt{2-1}$
equation of circle $(x-r)^{2}++(y-r)^{2}=r^{2}$
Equation of CE
$\mathrm{y}-1=\mathrm{m}(\mathrm{x}-1)$
$m x-y+1-M=0$
It is tangent to circle
$\therefore\left|\frac{\mathrm{mr}-\mathrm{r}+1-\mathrm{m}}{\sqrt{\mathrm{m}^{2}+1}}\right|=\mathrm{r}$
$\left|\frac{(m-1) r+1-m}{\sqrt{m^{2}+1}}\right|=r$
$\frac{(\mathrm{m}-1)^{2}(\mathrm{r}-1)^{2}}{\mathrm{~m}^{2}+1}=\mathrm{r}^{2}$
Put $\mathrm{r}=\sqrt{2}-1$
On solving $\mathrm{m}=2-\sqrt{3}, 2+\sqrt{3}$

Taking greater slope of CE as
$2+\sqrt{3}$
$y-1=(2+\sqrt{3})(x-1)$
Put $\mathrm{y}=0$
$-1=(2+\sqrt{3})(x-1)$
$\frac{-1}{2+\sqrt{3}} \times\left(\frac{2-\sqrt{3}}{2-\sqrt{3}}\right)=x-1$
$x-1=\sqrt{3}-1$
$\mathrm{EB}=1-\mathrm{x}=1-(\sqrt{3}-1)$
$\mathrm{EB}=2-\sqrt{3}$
Q. 8

$$
\begin{align*}
& \mathrm{x} 2+\mathrm{y} 2+\mathrm{ax}+2 \mathrm{ay}+\mathrm{c}=0 \\
& 2 \sqrt{\mathrm{~g}^{2}-\mathrm{c}}=2 \sqrt{\frac{\mathrm{a}^{2}}{4}-\mathrm{c}}=2 \sqrt{2} \\
& \Rightarrow \frac{\mathrm{a}^{2}}{4}-\mathrm{c}=2 \quad \ldots(1) \tag{1}\\
& 2 \sqrt{\mathrm{f}^{2}-\mathrm{c}}=2 \sqrt{\mathrm{a}^{2}-\mathrm{c}}=2 \sqrt{5} \\
& \Rightarrow \mathrm{a} 2-\mathrm{c}=5 \tag{2}\\
& (1) \&(2) \\
& \frac{\mathrm{a}^{2}}{3}=3 \Rightarrow \mathrm{a}=-2(\mathrm{a}<0) \\
& \therefore \mathrm{c}=-1 \\
& \text { Circle } \Rightarrow \mathrm{x} 2+\mathrm{y} 2-2 \mathrm{x}-4 \mathrm{y}-1=0 \\
& \Rightarrow(\mathrm{x}-1) 2+(\mathrm{y}-2) 2=6
\end{align*}
$$

Given $\mathrm{x}+2 \mathrm{y}=0 \Rightarrow \mathrm{~m}=-\frac{1}{2}$
$m_{\text {tangent }}=2$
Equation of tangent
$\Rightarrow(\mathrm{y}-2)=2(\mathrm{x}-1) \pm \sqrt{6} \sqrt{1+4}$
$\Rightarrow 2 \mathrm{x}-\mathrm{y} \pm \sqrt{30}=0$
Perpendicular distance from $(0,0)=\left|\frac{ \pm \sqrt{30}}{\sqrt{4+1}}\right|=\sqrt{6}$
Q. 9 (1)

$\left(\frac{h-\frac{(h-4)}{2}}{2-h}\right)(2)=-1$
$h=8$
center $(8,2)$
Radius $\left.=\sqrt{\left(\begin{array}{llll}8 & 2\end{array}\right)^{2}}\left(\begin{array}{ll}2 & 5\end{array}\right)^{2} \quad 3 \sqrt{5}\right)$
Q. 10 (2)
$r_{1}=3, c_{1}(5,5)$
$\mathrm{r}_{2}=3, \mathrm{c}_{2}(8,5)$
$\mathrm{C}_{1} \mathrm{C}_{2}=3, \mathrm{r}_{1}=3, \mathrm{r}_{2}=3$

Q. 11 (1)

Given $\mathrm{C}_{1}(5,5), \mathrm{r}_{1}=3$ and $\mathrm{C}_{2}(12,5), \mathrm{r}_{2}=3$
Now, $\mathrm{C}_{1} \mathrm{C}_{2}>\mathrm{r}_{1}+\mathrm{r}_{2}$
Thus, $\left(\mathrm{P}_{1} \mathrm{P}_{2}\right) \min =7-6=1$

Q. 12 (2)

$\tan \theta=\frac{12}{5}$
$\mathrm{PA}=\cot \frac{\theta}{2}$
\therefore area of $\triangle \mathrm{PAB}=\frac{1}{2}(\mathrm{PA}) \sin \theta \frac{1}{2} \cot ^{2} \frac{\theta}{2} \sin \theta$
$=\frac{1}{2}\left(\frac{1+\cos \theta}{1-\cos \theta}\right) \sin \theta$
$=\frac{1}{2}\left(\frac{1+\frac{5}{13}}{1-\frac{5}{13}}\right)\left(\frac{12}{13}\right)=\frac{1}{2} \frac{18}{18} \times \frac{2}{13}=\frac{27}{26}$
area of $\Delta \mathrm{CAB}=\frac{1}{2} \sin \theta=\frac{1}{2}\left(\frac{12}{13}\right) \quad \frac{6}{13}$
$\therefore \frac{\text { area of } \triangle \mathrm{PAB}}{\text { area of } \triangle \mathrm{CAB}}=\frac{9}{4}$
Option (2)
Q. 13 (3)

Tangent to circle $3 x+4 y=25$

$\mathrm{OP}+\mathrm{OQ}+\mathrm{OR}=25$
Incentre $\quad=\left(\frac{\frac{25}{4} \times \frac{25}{3}}{25}, \frac{\frac{25}{4} \times \frac{25}{3}}{25}\right)$
$=\left(\frac{25}{12}, \frac{25}{12}\right)$
$\therefore r^{2}=2\left(\frac{25}{12}\right)^{2}=2 \times \frac{625}{144}=\frac{625}{72}$
Option (3)
Q. 14 (3)
$x^{2}+y^{2}-10 x-10 y+41=0$
$\mathrm{A}(5,5), \mathrm{R}_{1}=3$
$\mathrm{x}^{2}+\mathrm{y}^{2}-22 \mathrm{x} \cdot 10 \mathrm{y}+137=0$
$B(11,5), R_{2}=3$
$\mathrm{AB}=6=\mathrm{R}_{1}+\mathrm{R}_{2}$
Touch each other externally
\Rightarrow circles have only one meeting point.
Q. 15 (2)

M: $x^{2}+y^{2}=1(0,0)$
$\mathrm{N}: \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}=0(1,0)$
O: $x^{2}+y^{2}-2 x-2 y+1=0(1,1)$
P: $x^{2}+y^{2}-2 y=0(0,1)$

Q. 16 (3)
$S_{1}: x^{2}+y^{2}=9<\begin{aligned} & r_{1}=3 \\ & A(0,0)\end{aligned}$
$\mathrm{S}_{2}:(\mathrm{x}-2)^{2}+\mathrm{y}^{2}=1>\begin{aligned} & \mathrm{r}_{2}=1 \\ & \mathrm{~B}(2,0)\end{aligned}$
$\mathrm{Q} \mathrm{c}_{1} \mathrm{c}_{2}=\mathrm{r}_{1}-\mathrm{r}_{2}$

\therefore given circle are touching internally
Let a veriable circle with centre P and radius r
$\Rightarrow \mathrm{PA}=\mathrm{r}_{1}-\mathrm{r}$ and $\mathrm{PB}=\mathrm{r}_{2}+\mathrm{r}$
$\Rightarrow \mathrm{PA}+\mathrm{PB}=\mathrm{r}_{1}+\mathrm{r}_{2}$
$\Rightarrow \mathrm{PA}+\mathrm{PB}=4(>\mathrm{AB})$
\Rightarrow Locus of P is an ellipse with foci at $\mathrm{A}(0,0)$ and $\mathrm{B}(2$,
0) and length of major axis is $2 \mathrm{a}=4, \mathrm{e}=\frac{1}{2}$
\Rightarrow centre is at $(1,0)$ and $b^{2}=a^{2}\left(1-e^{2}\right)=3$
if x-ellipse

$\Rightarrow E: \frac{(x-1)^{2}}{4}+\frac{y^{2}}{3}=$
which is satisfied by $\left(2, \pm \frac{3}{2}\right)$
Q. 17 (4)
Q. 18 (3)
Q. 19 (4)
Q. 20 (3)
Q. 21 (2)
Q. 22 (3)
Q. 23 (3)
Q. 24 (3)
Q. 25 (18)
Q. 26 [165]
Q. 27 (1)
Q. 28 (4)
Q. 29 [30]
Q. 30 (1)
Q. 31 [13]

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (D)

Let equation of circle is

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

as it passes through $(-1,0) \&(0,2)$
$\therefore \quad 1-2 \mathrm{~g}+\mathrm{c}=0 \quad$ and $\quad 4+4 \mathrm{f}+\mathrm{c}=0$
alsof ${ }^{2}=c$

$$
\Rightarrow \quad \mathrm{f}=-2, \mathrm{c}=4 ; \mathrm{g}=\frac{5}{2}
$$

$\therefore \quad$ equation of circle is $x^{2}+y^{2}+5 x-4 y+4=0$ which passes through $(-4,0)$

Q. 2 (2)

$$
\begin{aligned}
& 2 x-3 y=1, x^{2}+y^{2} \leq 6 \\
& S \equiv\left\{\left(2, \frac{3}{4}\right),\left(\frac{5}{2}, \frac{3}{4}\right),\left(\frac{1}{4},-\frac{1}{4}\right),\left(\frac{1}{8}, \frac{1}{4}\right)\right\} \\
& \text { (I) } \quad \text { (II) } \quad \text { (III) } \quad \text { (IV) }
\end{aligned}
$$

Plot the two curves

I, III, IV will lie inside the circle and point (I, III, IV) will lie on the P region
if $(0,0)$ and the given point will lie opposite to the line $2 x-3 y-1=0$
$\mathrm{P}(0,0)=$ negative, $\mathrm{P}\left(2, \frac{3}{4}\right)=$ positive, $\mathrm{P}\left(\frac{1}{4},-\frac{1}{4}\right)$
$=$ positive $\mathrm{P}\left(\frac{1}{8}, \frac{1}{4}\right)=$ negative
$\mathrm{P}\left(\frac{5}{2}, \frac{3}{4}\right)=$ positive, but it will not lie in the given circle
so point $\left(2, \frac{3}{4}\right)$ and $\left(\frac{1}{4},-\frac{1}{4}\right)$ will lie on the opp side of the line
so two point $\left(2, \frac{3}{4}\right)$ and $\left(\frac{1}{4},-\frac{1}{4}\right)$
Further $\left(2, \frac{3}{4}\right)$ and $\left(\frac{1}{4},-\frac{1}{4}\right)$ satisfy $S_{1}<0$

Q. 3 (A)

Circle $x^{2}+y^{2}=9 ; \quad$ line $4 x-5 y=20$,
$\mathrm{P}\left(\mathrm{t}, \frac{4 \mathrm{t}-20}{5}\right)$
equation of chord $A B$ whose mid point is $M(h, k)$
$\mathrm{T}=\mathrm{S}_{1}$
$\Rightarrow \mathrm{hx}+\mathrm{ky}=\mathrm{h}^{2}+\mathrm{k}^{2}$
equation of chord of contact $A B$ with respect to P. $\mathrm{T}=0$

$$
\begin{equation*}
\Rightarrow t x+\left(\frac{4 t-20}{5}\right) y=9 \tag{2}
\end{equation*}
$$

comparing equation (1) and (2)

$$
\frac{h}{\mathrm{t}}=\frac{5 \mathrm{k}}{4 \mathrm{t}-20}=\frac{\mathrm{h}^{2}+\mathrm{k}^{2}}{9}
$$

on solving
$45 \mathrm{k}=36 \mathrm{~h}-20 \mathrm{~h}^{2}-20 \mathrm{k}^{2}$
\Rightarrow Locus is $20\left(x^{2}+y^{2}\right)-36 x+45 y=0$

Comprehension \# 1 (Q. No. 4 \& 5)

Q. 4

Q. 5
(A)

Equation of tangent at $(\sqrt{3}, 1)$

$$
\Rightarrow \sqrt{3} x+y=4
$$

B divides $\mathrm{C}_{1} \mathrm{C}_{2}$ in 2: 1 externally
$\therefore \mathrm{B}(6,0)$
Hence let equation of common tangent is $y-0=m(x-6)$
$\Rightarrow m x-y-6 m=0$
length of \perp^{r} dropped from center $(0,0)=$ radius
$\left|\frac{6 m}{\sqrt{1+m^{2}}}\right|=2$
$\Rightarrow \mathrm{m}= \pm \frac{1}{2 \sqrt{2}}$
\therefore equation is $x+2 \sqrt{2} y=6$ or $x-2 \sqrt{2} y=6$

So5 Equation of L is
$x-y \sqrt{3}+c=0$
length of perpendicular dropped from centre $=$ radius of circle
$\therefore\left|\frac{3+C}{2}\right|=1 \quad \Rightarrow \mathrm{C}=-1,-5$
$\therefore \mathrm{x}-\sqrt{3} \mathrm{y}=1 \quad$ or $\mathrm{x}-\sqrt{3} \mathrm{y}=5$

Q. 6 (AC)

Let $x^{2}+y^{2}+2 g x+2 f y+c=0$
$\Rightarrow \mathrm{g}^{2}-\mathrm{c}=0 \Rightarrow \mathrm{~g}^{2}=\mathrm{c}$
$2 \sqrt{\mathrm{f}^{2}-\mathrm{c}}=2 \sqrt{7}$ $\Rightarrow \mathrm{f}^{2}-\mathrm{c}=7$
$9+0+6 \mathrm{~g}+0+\mathrm{c}=0 \quad \Rightarrow 9+6 \mathrm{~g}+\mathrm{g}^{2}=0$
$\Rightarrow(\mathrm{g}+3)^{2}=0$
$\mathrm{g}=-3 \quad \therefore \mathrm{c}=9$
$\mathrm{f}^{2}=16 \quad \Rightarrow \mathrm{f}= \pm 4$
$\therefore x^{2}+y^{2}-6 x \pm 8 y+9=0$

Q. 7 (BC)

Let the cirlce be
$x^{2}+y^{2}+2 g x+2 f y+c=0$
given circles
$x^{2}+y^{2}-2 x-15=0$
(1) \& (2) are orthogonal
$\Rightarrow-\mathrm{g}+0=\frac{\mathrm{c}-15}{2}$
$0+0=\frac{c-1}{2}$
$\Rightarrow \mathrm{c}=1 \& \mathrm{~g}=7$
so the cirle is
$x^{2}+y^{2}+14 x+2$ fy $+1=0 \quad$ it passes thrgouh
$(0,1) \Rightarrow 0+1+0+2 \mathrm{f}+1=0$

$$
f=-1
$$

$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+14 \mathrm{x}-2 \mathrm{y}+1=0$
Centre $(-7,1)$
radius $=7$
Q. 8
(A,C)
Eq^{n} of tangent from $Q(1, \mathrm{k})$ is

$$
y-\mathrm{k}=m(x-1)
$$

$$
\begin{aligned}
& "!c^{2}=a^{2}\left(m^{2}+1\right) \\
& (\mathrm{k}-m)^{2}=m^{2}+1 \\
& m=\frac{k^{2}-1}{2 k}
\end{aligned}
$$

So, Eq^{n} of $Q P$ is $\frac{k^{2}-1}{2 k} x-y+\frac{k^{2}+1}{2 k}=0$
Q. 10

Hence, P is $\left(\frac{1-k^{2}}{1+k^{2}}, \frac{2 k}{1+k^{2}}\right)$

So, Eq^{n} of $O P$ is $y=\frac{2 k}{1-k^{2}} x$

$$
\downarrow \mathrm{E}(h, k)
$$

So, locus of E is $1-y^{2}-2 x=0$
Hence, (a, c)

Q. 9 (2)

Case-I Passing through origin $\Rightarrow \mathrm{p}=0$

Case-II Touches y -axis and cuts x -axis

$\mathrm{f}^{2}-\mathrm{c}=0 \& \mathrm{~g}^{2}-\mathrm{c}>0$
$4+\mathrm{p}=0 \quad 1+\mathrm{p}>0$
$p=-4$ Not possible
Case-III Touches x-axis and cuts y-axis

$\begin{array}{ll}\mathrm{f}^{2}-\mathrm{c}>0 \& \mathrm{~g}^{2}-\mathrm{c}=0 \\ 4+\mathrm{p}>0 & 1+\mathrm{p}=0\end{array}$
So two value of p are possible

Comprehenssion \# 1 (Q. No. 10 to 14)

(A)

Co-ordinates of E_{1} and E_{2} are obtained by solving $y=$ 1 and $x^{2}+y^{2}=4$
$\therefore \quad \mathrm{E}_{1}(-\sqrt{3}, 1)$ and $\mathrm{E}_{2}(\sqrt{3}, 1)$
Co-ordinates of F_{1} and F_{2} are obtained by solving

$$
\begin{aligned}
& x=1 \text { and } x^{2}+y^{2}=4 \\
& F_{1}(1, \sqrt{3}) \text { and } F_{2}(1,-\sqrt{3})
\end{aligned}
$$

Tangent at $E_{1}:-\sqrt{3} x+y=4$
Tangent at $E_{2}: \quad \sqrt{3} x+y=4$
$\therefore \quad \mathrm{E}_{3}(0,4)$
Tangent at $F_{1}: x+\sqrt{3} y=4$
Tangent at $F_{2}: x-\sqrt{3} y=4$
$\therefore \quad \mathrm{F}_{3}(4,0)$
and similarly $\mathrm{G}_{3}(2,2)$
$(0,4),(4,0)$ and $(2,2)$ lies on $x+y=4$
Q. 11 (D)

Tangent at $\mathrm{P}(2 \cos \theta, 2 \sin \theta)$ is $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=2$
$\mathrm{M}(2 \sec \theta, 0)$ and $\mathrm{N}(0,2 \operatorname{cosec} \theta)$
Let midpoint be (h, k)
$\mathrm{h}=\sec \theta, \mathrm{k}=\operatorname{cosec} \theta$

$$
\begin{aligned}
& \frac{1}{\mathrm{~h}^{2}}+\frac{1}{\mathrm{k}^{2}}=1 \\
& \frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}=1
\end{aligned}
$$

Q. 12 (D)

$\mathrm{AP}=\mathrm{AQ}=\mathrm{AM}$
Locus of M is a cricle having PQ as its diameter
Hence, $E_{1}:(x-2)(x+2)+(y-7)(y+5)=0$ and x $\neq \pm 2$
Locus of B (midpoint)
is a circle having RC as its diameter
$\mathrm{E}_{2}: \mathrm{x}(\mathrm{x}-1)+(\mathrm{y}-1)^{2}=0$
Now, after checking the options, we get (D)
Q. 13 (B)

$R \equiv\left(-\frac{3}{5}, \frac{-3 m}{5}+1\right)$
So, $m\left(\frac{-\frac{3 m}{5}+3}{-\frac{3}{5}-3}\right)=-1$
$\Rightarrow \mathrm{m}^{2}-5 \mathrm{~m}+6=0 \Rightarrow \mathrm{~m}=2,3$
Q. 14 (10.00)

Distance of point A from given line $=\frac{5}{2}$

$\frac{\mathrm{CA}}{\mathrm{CB}}=\frac{2}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{2}{1} \Rightarrow \mathrm{AC}=2 \times 5=10$

Comprehenssion \# 3 (Q. No. 15 to 16)

Q. 15 (1)
Q. 16 (4)

$\mathrm{MC}_{1}+\mathrm{C}_{1} \mathrm{C}_{2}+\mathrm{C}_{2} \mathrm{~N}=2 \mathrm{r}$
$\Rightarrow 3+5+4=2 \mathrm{r}=6 \Rightarrow$ Radius of $\mathrm{C}_{3}=6$
Suppose centre of C_{3} be $\left(0+r_{4} \cos \theta, 0+r_{4} \sin \theta\right)$,
$\left\{\begin{array}{l}\mathrm{r}_{4}=\mathrm{C}_{1} \mathrm{C}_{3}=3 \\ \tan \theta=\frac{4}{3}\end{array}\right\}$
$C_{3}=\left(\frac{9}{5}, \frac{12}{5}\right)=(\mathrm{h}, \mathrm{k}) \Rightarrow 2 \mathrm{~h}+\mathrm{k}=6$
Equation of ZW and XY is $3 x+4 y-9=0$
(common chord of circle $\mathrm{C}_{1}=0$ and $\mathrm{C}_{2}=0$)

$\mathrm{ZW}=2 \sqrt{\mathrm{r}^{2}-\mathrm{p}^{2}}=\frac{24 \sqrt{6}}{5}\left(\right.$ where $\mathrm{r}=6$ and $\left.\mathrm{p}=\frac{6}{5}\right)$
$\mathrm{XY}=2 \sqrt{\mathrm{r}_{1}^{2}-\mathrm{p}_{1}^{2}}=\frac{24}{5}\left(\right.$ where $\mathrm{r}_{1}=3$ and $\left.\mathrm{p}_{1}=\frac{9}{5}\right)$

$\frac{\text { Length of } \mathrm{ZW}}{\text { Length of } X Y}=\sqrt{6}$
Let length of perpendicular from M to ZW be $\lambda, \lambda=$
$3+\frac{9}{5}=\frac{24}{5}$
$\frac{\text { Area of } \Delta \mathrm{MZN}}{\text { Area of } \Delta \mathrm{ZMW}}=\frac{\frac{1}{2}(\mathrm{MN}) \times \frac{1}{2}(\mathrm{ZW})}{\frac{1}{2} \times \mathrm{ZW} \times \lambda}=\frac{1}{2} \frac{\mathrm{MN}}{\lambda}=\frac{5}{4}$
$C_{3}:\left(x-\frac{9}{5}\right)^{2}+\left(y-\frac{12}{5}\right)^{2}=6^{2}$
$C_{1}: x^{2}+y^{2}-9=0$
common tangent to C_{1} and C_{3} is common chord of C_{1} and C_{3} is $3 \mathrm{x}+4 \mathrm{y}+15=0$.
Now $3 x+4 y+15=0$ is tangent to parabola $x^{2}=$ $8 \alpha y$.

$$
\begin{aligned}
& x^{2}=8 \alpha\left(\frac{-3 x-15}{4}\right) \Rightarrow 4 x^{2}+24 \alpha x+120 \alpha=0 \\
& D=0 \Rightarrow \alpha=\frac{10}{3}
\end{aligned}
$$

Q. 17 [2]

M-I

$$
\begin{aligned}
& \mathrm{OA}=\frac{\sqrt{5}}{2} \quad \mathrm{OC}=\frac{4}{\sqrt{5}} \\
& \mathrm{CQ}=\mathrm{OC}=\frac{4}{\sqrt{5}} \text { and } \mathrm{CA}=\frac{3}{2 \sqrt{5}}
\end{aligned}
$$

$$
\therefore \quad \mathrm{OQ}=\sqrt{\mathrm{OA}^{2}+\mathrm{AQ}^{2}}=\sqrt{\mathrm{OA}^{2}+\left(\mathrm{CQ}^{2}-\mathrm{CA}^{2}\right)}
$$

$$
\Rightarrow \sqrt{\frac{5}{4}+\frac{16}{5}-\frac{9}{20}}=\sqrt{4}
$$

$$
\Rightarrow 2=\mathrm{r}
$$

M-II

$P Q: h x+k y=r^{2}$

Given PQ $\quad 2 \mathrm{x}+4 \mathrm{y}=5$
$\Rightarrow \frac{\mathrm{h}}{2}=\frac{\mathrm{k}}{4}=\frac{\mathrm{r}^{2}}{5} \Rightarrow \mathrm{~h}=\frac{2 \mathrm{r}^{2}}{5} \quad \mathrm{k}=\frac{4 \mathrm{r}^{2}}{5}$
$\therefore \quad \mathrm{C}\left(\frac{\mathrm{r}^{2}}{5}, \frac{2 \mathrm{r}^{2}}{5}\right)$
$\therefore \quad$ C lies on $x+2 y=4 \quad \Rightarrow \quad \frac{r^{2}}{5}+2\left(\frac{2 r^{2}}{5}\right)=4$
$\Rightarrow r^{2}=4 \quad \Rightarrow r=2$
Q. 18 (B)

one of the vectex is intersection of x-axis and $x+y+$ $1=0 \Rightarrow \mathrm{~A}(-1,0)$
Let vertex B be $(\alpha,-\alpha-1)$
Line $\mathrm{AC} \perp \mathrm{BH} \Rightarrow \alpha=1 \Rightarrow \mathrm{~B}(1,-2)$
Let vertex C be $(\beta, 0)$
Line $\mathrm{AH} \perp \mathrm{BC}$
$\mathrm{m}_{\mathrm{AH}} \cdot \mathrm{m}_{\mathrm{BC}}=-1$
$\frac{1}{2} \cdot \frac{2}{\beta-1}=-1 \Rightarrow \beta=0$
Centroid of $\triangle \mathrm{ABC}$ is $\left(0,-\frac{2}{3}\right)$
Now G (centroid) divides line joining circum centre O (O and ortho centre (H) in the ratio $1: 2$

$$
\begin{aligned}
& 2 \mathrm{~h}+1=0 \quad 2 \mathrm{k}+1=-\mathrm{z} \\
& \mathrm{~h}=-\frac{1}{2} \quad \mathrm{k}=-\frac{3}{2} \\
& \Rightarrow \text { circum centre is }\left(-\frac{1}{2},-\frac{3}{2}\right)
\end{aligned}
$$

Equation of circum circle is (passing through $\mathrm{C}(0,0)$) is $x^{2}+y^{2}+x+3 y=0$

Parabola

EXERCISES

ELEMENTRY

Q. 1 (1)

Required locus is $(3 y)^{2}=4 a x$
$\Rightarrow 9 y^{2}=4 \mathrm{ax}$

Q. 2 (3) $S \equiv(5,0)$. Therefore, latus rectum $=4 \mathrm{a}=20$.
Q. 3 (2)

Distance between focus and directrix is
$=\left|\frac{3-4-2}{\sqrt{2}}\right|=\frac{ \pm 3}{\sqrt{2}}$
Hence latus rectum $=3 \sqrt{2}$
(Since latus rectum is two times the distance between focus and directrix).
Q. 4
(4)
$\mathrm{a}=4,=(0,0)$ vertex , focus $=(0,-4)$
Q. 5 (3)

Vertex $=(2,0) \Rightarrow$ focus is $(2+2,0)=(4,0)$.
Q. 6 (3)

The point $(-3,2)$ will satisfy the equation $y^{2}=4 a x$
$\Rightarrow 4=-12 \mathrm{a}, \Rightarrow 4 \mathrm{a}=-\frac{4}{3}=\frac{4}{3}$
(Taking positive sign).
Q. 7 (3)
$x^{2}=-8 y \Rightarrow a=-2$ So, focus $=(0,-2)$
Ends of latus rectum $=(4,-2),(-4,-2)$.
Trick: Since the ends of latus rectum lie on parabola, so only points $(-4,-2)$ and $(4,-2)$ satisfy the parabola.
Q. 8 (1)

Given equation is $x^{2}=-8 a y$.
Here $\mathrm{A}=2 \mathrm{a}$
Focus of parabola ($0,-\mathrm{A}$) i.e. ($0,-2 \mathrm{a}$)
Directrix y =A i.e., $\mathrm{y}=2 \mathrm{a}$.
Q. 9
(4)

Clearly; $\mathrm{a}=\left|\frac{-8}{\sqrt{1+1}}\right|-\left|\frac{-12}{\sqrt{1+1}}\right|=\frac{4}{\sqrt{2}}$

Length of latus rectum $=4 a=4 \times \frac{4}{\sqrt{2}}=8 \sqrt{2}$.
Q. 10 (1)
$(x+1)^{2}=4 a(y+2)$
Passes through $(3,6) \Rightarrow 16=4 \mathrm{a} .8 \Rightarrow \mathrm{a}=\frac{1}{2}$
$\Rightarrow(\mathrm{x}+1)^{2}=2(\mathrm{y}+2) \Rightarrow \mathrm{x}^{2}+2 \mathrm{x}-2 \mathrm{y}-3=0$
Q. 11 (4)

The parabola is $(x-2)^{2}=(3 y-6)$. Hence axis is $\mathrm{x}-2=0$.
Q. 12 (2)

Let any point on it be (x, y), then from definition of parabola, we get
Squaring and after simplification, we get
$\frac{\sqrt{(x+8)^{2}+(y+2)^{2}}}{\left|\frac{2 x-y-9}{\sqrt{5}}\right|}=1$
$x^{2}+4 y^{2}+4 x y+116 x+2 y+259=0$.
Q. 13 (3)

Vertex (0,4) ; focus (0,2) ; $\therefore \mathrm{x}=2$
Hence parabola is $(x-0)^{2}=-4.2(y-4)$
i.e., $x^{2}+8 y=32$.
Q. 14 (2)

Parametric equations of $y^{2}=4 a x$ are $x=a t^{2}, y=2 a t$ Hence if equation is $y^{2}=8 x$, then parametric equations are $x=2 t^{2}, y=4 t$.
Q. 15 (3)

Semi latus rectum is harmonic mean between segments of focal chords of a parabola.
$\therefore b=\frac{2 a c}{a+c} \Rightarrow a, b, c$ are in H.P.
Q. 16 (2)
$\mathrm{S}_{1} \equiv \mathrm{x}^{2}-108 \mathrm{y}=0$
$T \equiv x_{1}-2 a\left(y+y_{1}\right)=0 \Rightarrow x_{1}-54\left(y+\frac{x_{1}^{2}}{108}\right)=0$
$S_{2} \equiv y^{2}-32 x=0$
$T \equiv y_{2}-2 a\left(x+x_{2}\right)=0 \Rightarrow y_{2}-16\left(x+\frac{y_{2}^{2}}{32}\right)=0$
$\therefore \frac{\mathrm{x}_{1}}{16}=\frac{54}{\mathrm{y}_{2}}=\frac{-\mathrm{x}_{1}^{2}}{\mathrm{y}_{2}^{2}}=\mathrm{r} \Rightarrow \mathrm{x}_{1}=16 \mathrm{r} \quad$ and $\quad \mathrm{y}_{2}=\frac{54}{\mathrm{r}}$
$\therefore \frac{-(16 r)^{2}}{(54 / r)^{2}}=r \Rightarrow r=-\frac{9}{4}$
$x_{1}=-36, y_{2}=-24, y_{1}=\frac{(36)^{2}}{108}=12, x_{2}=18$
\therefore Equation of common tangent
$(y-12)=\frac{-36}{54}(x+36) \Rightarrow 2 x+3 y+36=0$
Aliter : Using direct formula of common tangent $\mathrm{yb}^{1 / 3}+\mathrm{xa}^{1 / 3}+(\mathrm{ab})^{2 / 3}=0$, where $\mathrm{a}=8$ and $\mathrm{b}=27$.

Hence the required tangent is $3 y+2 x+36=0$.
Q. 17 (3)
$\mathrm{m}=\tan \theta$. The tangent to $\mathrm{y}^{2}=4 \mathrm{ax}$ is $\mathrm{y}=\mathrm{x} \tan \theta+\mathrm{c}$
Hence $c=\frac{a}{\tan \theta}=a \cot \theta$
\therefore The equation of tangent is $\mathrm{y}=\mathrm{x} \tan \theta+\mathrm{a} \cot \theta$.

Q. 18 (2)

Equation of parabola is $\mathrm{Y}^{2}=4 \mathrm{X}$,
where $X=x+\frac{5}{4}$
Tangent parallel to $Y=2 X+7$ is $Y=2 X+\frac{a}{m}$
$\Rightarrow \mathrm{y}=2\left(\mathrm{x}+\frac{5}{4}\right)+\frac{1}{2} \Rightarrow \mathrm{y}=2 \mathrm{x}+3$
i.e., $2 \mathrm{x}-\mathrm{y}+3=0$.
Q. 19 (1)

$$
\mathrm{m}=\tan \theta=\tan 60^{\circ}=\sqrt{3}
$$

The equation of tangent at (h, k) to $y^{2}=4 a x$ is $\mathrm{yk}=2 \mathrm{a}(\mathrm{x}+\mathrm{h})$

Comparing, we get $\mathrm{m}=\sqrt{3}=\frac{2 \mathrm{a}}{\mathrm{k}} \quad$ or $\mathrm{k}=\frac{2 \mathrm{a}}{\sqrt{3}}$
and $\mathrm{h}=\frac{\mathrm{a}}{3}$.
Q. 20 (1)

Any point on $y^{2}=4 a x$ is $\left(a^{2}, 2 a t\right)$, then tangent is

$$
2 \mathrm{aty}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{t}^{2}\right) \Rightarrow \mathrm{yt}=\mathrm{x}+\mathrm{at}^{2}
$$

Q. 21 (1)

Normal at (h, k) to the parabola $y^{2}=8 x$ is
$y-k=-\frac{k}{4}(x-h)$
Gradient $=\tan 60^{\circ}=\sqrt{3}=-\frac{\mathrm{k}}{4} \Rightarrow \mathrm{k}=-4 \sqrt{3}$ and $h=6$

Hence required point is $(6,-4 \sqrt{3})$
Q. 22 (3)

$$
\begin{aligned}
y & -\frac{2 a}{m}=-\frac{2 a / m}{2 a}\left(x-\frac{a}{m^{2}}\right) \\
& \Rightarrow y-\frac{2 a}{m}=\frac{-1}{m}\left(x-\frac{a}{m^{2}}\right) \\
& \Rightarrow m^{3} y+m^{2} x-2 a m^{2}-a=0
\end{aligned}
$$

Q. 23 (4)

Let normal at (h, k) be $y=m x+c$
then, $\mathrm{k}=\mathrm{mh}+\mathrm{c}$ also $\mathrm{k}^{2}=4 \mathrm{a}(\mathrm{h}-\mathrm{a})$
slope of tangent at (h, k) is m_{1} then on differentiating equation of parabola.
$2 \mathrm{ym}_{1}=4 \mathrm{a} \Rightarrow \mathrm{m}_{1}=\frac{2 \mathrm{a}}{\mathrm{k}}$ also $\mathrm{mm}_{1}=-1$
$\Rightarrow \mathrm{m}=-\frac{\mathrm{k}}{2 \mathrm{a}}$, solving and replacing (h, k) by (x, y)
$\Rightarrow \mathrm{y}=\mathrm{m}(\mathrm{x}-\mathrm{a})-2 \mathrm{am}-\mathrm{am}^{3}$.
Q. 24 (4)

We have $t_{2}=-t_{1}-\frac{2}{t_{1}}$
Since $a=2, t_{1}=1 \quad \therefore t_{2}=-3$
\therefore The other end will be $\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right)$ i.e., $(18,-12)$.
Q. 25 (4)

The given point $(-1,-60)$ lies on the directrix $x=-1$ of the parabola $y^{2}=4 x$. Thus the tangents are at right angle.
Q. 26 (3)

Equation of tangent at $(1,7)$ to $y=x^{2}+6$
$\frac{1}{2}(y+7)=x .1+6 \Rightarrow y=2 x+5$
This tangent also touches the circle
$x^{2}+y^{2}+16 x+12 y+c=0$
Now solving (i) and (ii), we get
$\Rightarrow \mathrm{x}^{2}+(2 \mathrm{x}+5)^{2}+16 \mathrm{x}+12(2 \mathrm{x}+5)+\mathrm{c}=0$
$\Rightarrow 5 \mathrm{x}^{2}+60 \mathrm{x}+85+\mathrm{c}=0$
Since, roots are equal so

$$
\begin{aligned}
& \mathrm{b}^{2}-4 \mathrm{ac}=0 \Rightarrow(60)^{2}-4 \times \mathrm{S} \times(85+\mathrm{c})=0 \\
& \Rightarrow 85+\mathrm{c}=180 \Rightarrow 5 \mathrm{x}^{2}+60 \mathrm{x}+180=0 \\
& \Rightarrow \mathrm{x}=-\frac{60}{10}=-6 \Rightarrow y=-7
\end{aligned}
$$

Hence, point of contact is $(-6,7)$

Q. 27 (3)

Equation of chord of contact of tangent drawn from a
point $\quad\left(x_{1}, y_{1}\right)$ to parabola $y^{2}=4 \mathrm{ax}$ is $\mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)$ so that $5 \mathrm{y}=2 \times 2(\mathrm{x}+2) \quad \Rightarrow$ $5 y=4 x+8$. Point of intersection of chord of contact
with parabola $y^{2}=8 x$ are $\left(\frac{1}{2}, 2\right),(8,8)$, so that length $=\frac{3}{2} \sqrt{41}$.
Q. 28 (1)

The combined equation of the lines joining the vertex to the points of intersection of the line $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$ and the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$, is $y^{2}=4 a x\left(\frac{l x+m y}{-n}\right)$ or $4 a^{2} x^{2}+4 a m x y+n y^{2}=0$

This represents a pair of perpendicular lines, if $4 \mathrm{al}+\mathrm{n}=0$.
Q. 29 (1)

From diagram, $\theta=45^{\circ}$
\Rightarrow Slope $= \pm 1$.

Q. 30 (2)

Any line through origin $(0,0)$ is $y=m x$. It intersects $y^{2}=4 a x$ in $\left(\frac{4 a}{m^{2}}, \frac{4 a}{m}\right)$.

Mid point of the chord is $\left(\frac{2 a}{m^{2}}, \frac{2 a}{m}\right)$
$x=\frac{2 a}{m^{2}}, y=\frac{2 a}{m} \Rightarrow \frac{2 a}{x}=\frac{4 a^{2}}{y^{2}}$ or $y^{2}=2 a x$,
which is a parabola.
JEE-MAIN
OBJECTIVE QUESTIONS
Q. 1
(4)

Eq. of the parabola is
$\sqrt{(x+3)^{2}+y^{2}}=|x+5|$

$$
\begin{aligned}
& x^{2}+6 x+9+y^{2}=x^{2}+25+10 x \\
& y^{2}=4(x+4)
\end{aligned}
$$

A is the mid point of $N \& S$ focus is $(4,0)$
Q. 3 (4)
$(x-2)^{2}+(y-3)^{2}=\left|\frac{3 x-4 y+7}{5}\right|^{2}$
\therefore focus is $(2,3) \&$ directrix is $3 x-4 y+7=0$ latus rectum $=2 \times \perp_{\mathrm{r}}$ distance from focus to directrix $=2 \times \frac{1}{5}=2 / 5$
Q. 4 (1)
$y^{2}-12 x-4 y+4=0$
$y^{2}-4 y=12 x-4$
$(y-2)^{2}=12 x$

$\mathrm{Y}^{2}=12 \mathrm{X}$
$x^{2}=4 a y$
$(X-3)^{2}+4 x^{2}(Y-2)$
$x^{2}-6 x+9=8 y-16$
$x^{2}-6 x-8 y+25=0$
Q. 5 (3)

Directrix: $\mathrm{x}+\mathrm{y}-2=0$
Focus to directrix distance $=2 \mathrm{a}$
$2 \mathrm{a}=\left|\frac{0+0-2}{\sqrt{2}}\right|$
$2 \mathrm{a}=\sqrt{2}$
$L R=4 a=2 \sqrt{2}$

$\tan \alpha+\tan \beta=\lambda($ constant $)$
$\frac{\mathrm{k}}{\mathrm{h}+\mathrm{a}}+\frac{\mathrm{k}}{\mathrm{a}-\mathrm{h}}=\lambda$
$\frac{1}{a+h}+\frac{1}{a-h}=\frac{\lambda}{k}$
$\frac{\mathrm{a}-\mathrm{h}+\mathrm{a}+\mathrm{h}}{\mathrm{a}^{2}-\mathrm{h}^{2}}=\frac{\lambda}{\mathrm{k}}$
$2 \mathrm{ak}=\left(\mathrm{a}^{2}-\mathrm{h}^{2}\right) \lambda$

$$
\frac{2 a y}{\lambda}=\left(a^{2}-x^{2}\right) \quad \Rightarrow x^{2}=-\frac{2 a y}{\lambda}+a^{2}
$$

Q. 7 (2)
$x^{2}-2=-2 \cos t, y=4 \cos ^{2} \frac{t}{2}$
$\cos t=\frac{x^{2}-2}{-2}, y=4 \cos ^{2} \frac{t}{2}$
$y=2\left(2 \cos ^{2} \frac{t}{2}\right)$
$y=2(1+\cos t)$
$y=2\left(1+\frac{x^{2}-2}{-2}\right)$
$y=2+2-x^{2}$
$\mathrm{y}=4-\mathrm{x}^{2}$
Q. 8
(2)

Let the point P is $\left(3 t^{2}, 6 t\right)$
and $\mathrm{PS}=3+3 \mathrm{t}^{2}=4$
$\mathrm{t}^{2}=1 / 3$
$\mathrm{t}= \pm \frac{1}{\sqrt{3}}$
\therefore Points are
$(1,2 \sqrt{3}) \&(1,-2 \sqrt{3})$
Q. 9 (2)
$x=t^{2}+1 ; y=2 t \Rightarrow t=\frac{y}{2}$
$x=\frac{y^{2}}{4}+1$
$x=2 s ; y=\frac{2}{s} \Rightarrow s=\frac{2}{y}$
$x=\frac{4}{y} \Rightarrow \frac{4}{y}=\frac{y^{2}}{4}+1$
$\left.y^{3}+4 y-16=0 \Rightarrow \begin{array}{l}y=2 \\ x=2\end{array}\right\}$ POI

Aliter

Assume a point on hyperbola $\left(2 t, \frac{2}{t}\right)$
Put in parabola
$2 \mathrm{t}=\frac{1}{\mathrm{t}^{2}}+1 \Rightarrow 2 \mathrm{t}^{3}-\mathrm{t}^{2}-1=0$
$\mathrm{t}=1$ will satisfy point $(2,2)$
Q. 10
(1)

$\angle \mathrm{AOM}=30^{\circ}$ as angle $\angle \mathrm{AOB}=60^{\circ}$
$\tan 30^{\circ}=\frac{\beta}{\alpha}$
$\alpha=\beta \sqrt{3}$
$\therefore \quad \mathrm{A}$ is $(\beta \sqrt{3}, \beta)$
Now A will satisfy equation of parabola $y^{2}=4 x$
$\beta^{2}=4 \cdot \beta \sqrt{3} \Rightarrow \beta=4 \sqrt{3} \Rightarrow \beta \neq 0$
$\therefore \quad \mathrm{AB}=8 \sqrt{3}$

Alter

Use parametiric form
at $\mathrm{A}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right) \quad \Rightarrow\left(\mathrm{t}^{2}, 2 \mathrm{t}\right)$
$\tan 30^{\circ}=\frac{2 \mathrm{t}}{\mathrm{t}^{2}}$
$\Rightarrow t=2 \sqrt{3}$; so $A(12,4 \sqrt{3})$
So. $\ell_{\mathrm{OA}}=$ side of $\Delta=8 \sqrt{3}$
Q. 11 (1)

Length of chord $=\frac{4}{m^{2}} \sqrt{a(a-m c)\left(1+m^{2}\right)}$
$\mathrm{m}=\tan 60^{\circ}=\sqrt{3}$
Length of chord $=\frac{4}{3} \sqrt{3(3-\sqrt{3} \times 0)(1+3)}$

$$
=\frac{4}{3} \sqrt{36}=8
$$

Q. 12 (1)
$\mathrm{y}^{2}=4 \mathrm{x}$
$\mathrm{P}\left(\mathrm{t}^{2}, 2 \mathrm{t}\right)$

$$
\mathrm{a}=1
$$

$$
\mathrm{t}_{1} \mathrm{t}_{2}=-1
$$

For focal chord

$$
\begin{aligned}
& \mathrm{t}_{2}=-\frac{1}{\mathrm{t}} \\
& \mathrm{Q}\left(\frac{1}{\mathrm{t}^{2}}, \frac{-2}{\mathrm{t}}\right)
\end{aligned}
$$

$$
P Q=\sqrt{\left(t^{2}-\frac{1}{t^{2}}\right)^{2}+\left(2 t+\frac{2}{t}\right)^{2}}
$$

$$
=\left(t+\frac{1}{t}\right) \sqrt{\left(t-\frac{1}{t}\right)^{2}+4}=\left(t+\frac{1}{t}\right)^{2}
$$

Q. 13 (1)

$\mathrm{y}^{2}=4 \mathrm{ax}$
$\mathrm{x}_{1}{ }^{2}=4 \mathrm{ax}_{1}$
$\mathrm{x}_{1}=0,4 \mathrm{a}$
$\mathrm{P}(4 \mathrm{a}, 4 \mathrm{a})$
$\therefore \quad Q$ is $(9 a,-6 a)\left\{u \operatorname{sing} t_{2}=-t_{1}-\frac{2}{t_{1}}\right\}$
$\Rightarrow \quad \mathrm{x}^{2}-4 \mathrm{mx}-\frac{4}{\mathrm{~m}}=0$
$\mathrm{D}=0 \Rightarrow 16 \mathrm{~m}^{2}+\frac{16}{\mathrm{~m}}=0 \Rightarrow \mathrm{~m}=-1$
slope of $\mathrm{PS} \times$ slope of $\mathrm{QS}=-1$
Q. 14 (1)

From the property $\frac{1}{P S}+\frac{1}{Q S}=\frac{1}{a}$
$\frac{1}{3}+\frac{1}{2}=\frac{1}{a}$
$a=\frac{6}{5}$
\therefore Latus rectum $=4 a=\frac{24}{5}$
Q. 15 (1)
$y^{2}=8 \mathrm{x}$
$\mathrm{SP}=6$
$\mathrm{SP}=6$
$\frac{1}{b}+\frac{1}{c}=\frac{1}{a}$

$\frac{1}{c}=\frac{1}{a}-\frac{1}{b}$
$\mathrm{c}=\frac{\mathrm{ab}}{\mathrm{b}-\mathrm{a}}$
$\mathrm{b}=6, \mathrm{a}=2$
$=\frac{12}{4}=3$
Q. 16 (4)

$$
\begin{aligned}
& y=2 x-3, y^{2}=4 a\left(x-\frac{1}{3}\right) \\
& (2 x-3)^{2}=4 a\left(x-\frac{1}{3}\right) \\
& \Rightarrow 4 x^{2}+9-12 x=4 a x-\frac{4}{3} a \\
& \quad \Rightarrow 4 x^{2}-4(3+a) x+9+\frac{4 a}{3}=0
\end{aligned}
$$

equal roots $D=0$
$16(3+a)^{2}-4 \times 4 \times\left(9+\frac{4 a}{3}\right)=0$
$\Rightarrow 9+a^{2}+6 a-9-\frac{4 a}{3}=0$
$\Rightarrow \mathrm{a}^{2}+6 \mathrm{a}-\frac{4 \mathrm{a}}{3}=0 \quad \Rightarrow 3 \mathrm{a}^{2}+14 \mathrm{a}=0$
$a=0, a=-\frac{14}{3}$

Q. 17 (4)

Slope of tangent $=\frac{1-0}{4-3}=1$
also $\frac{d y}{d x}=2(x-3)$
$\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=2\left(x_{1}-3\right)=1 \Rightarrow x_{1}-3=\frac{1}{2}$
$x_{1}=\frac{7}{2}$
$\therefore \quad y_{1}=\left(\frac{7}{2}-3\right)^{2}=\frac{1}{4}$
Equation of tangent is
$y-\frac{1}{4}=1\left(x-\frac{7}{2}\right)$
$4 y-1=2(2 x-7)$
$4 x-4 y=13$
Q. 18 (3)

Let the equation of tangent to the parabola $y^{2}=4 x$ is
$y=m x+\frac{1}{m}$
solving equation (1) with parabola $x^{2}=4 y$
$\Rightarrow \mathrm{x}^{2}=4\left(\mathrm{mx}+\frac{1}{\mathrm{~m}}\right)$
Now put $D=0 \&$ find the value of m

Q. 19 (2)

$\mathrm{N}\left(\mathrm{at}^{2}, 0\right)$
solve $y=$ at with curve $y^{2}=4 a x$
$x=\frac{a t^{2}}{4}$

$Q\left(\frac{a t^{2}}{4}, a t\right)$

Equation of $\mathrm{QN} y=\frac{d t}{\left(\frac{a t^{2}}{4}-a t^{2}\right)}\left(x-a t^{2}\right)$
put $\mathrm{x}=0 \mathrm{y}=\frac{4}{3}$ at
$\mathrm{T}\left(0, \frac{4}{3} \mathrm{at}\right) \mathrm{AT}=\frac{4}{3} \mathrm{at}$
$\mathrm{PN}=2 \mathrm{at}$
$\frac{\mathrm{AT}}{\mathrm{PN}}=\frac{4 / 3 \text { at }}{2 \text { at }}=\frac{2}{3}$ so $\mathrm{k}=\frac{2}{3}$

Q. 20 (1)

Equation of normal to the parabola $y^{2}=4 a x$ at points ($\mathrm{am}^{2}, 2 \mathrm{am}$) is
$y=-m x+2 a m+a^{3}$
Q. 21 (4)

Point ($\mathrm{am}^{2},-2 \mathrm{am}$), where $\mathrm{m}= \pm 1$
\therefore point is $(1,2)$
Q. 22 (3)

Line : $y=-2 x-\lambda$
Parabola : $\mathrm{y}^{2}=-8 \mathrm{x}$
$\mathrm{c}=-2 \mathrm{am}-\mathrm{am}^{3}$
(condition for line to be normal to parabola)
$-\lambda=-2 \times-2 \times-2-(-2)(-8)$
$-\lambda=-8-16$
$\lambda=24$
Q. 23 (2)

Normal at $\mathrm{P}\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right)$
$\mathrm{a}=1$
$\mathrm{P}\left(\mathrm{t}_{1}^{2}, 2 \mathrm{t}_{1}\right)$
$\mathrm{y}+\mathrm{t}_{1} \mathrm{x}=2 \mathrm{t}_{1}+\mathrm{t}_{1}{ }^{3}$

slope $=1=-t_{1}$
$\mathrm{t}_{1}=-1$
$\mathrm{P}(1,-2)$

$$
\begin{aligned}
& \mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}} \\
& \mathrm{t}_{2}=1+2=3
\end{aligned}
$$

$\mathrm{Q}\left(\mathrm{t}_{2}^{2}, 2 \mathrm{t}_{2}\right)$
Q $(9,6)$
$\mathrm{PQ}=\sqrt{(9-1)^{2}+(6+2)^{2}}=8 \sqrt{2}$
Q. 24 (3)

Use $\mathrm{T}^{2}=\mathrm{SS}_{1}$
$\Rightarrow \quad[\mathrm{y} .0-4(\mathrm{x}+2)]^{2}=\left(\mathrm{y}^{2}-8 \mathrm{x}\right)(0-8(-2))$
$\Rightarrow 16(x-2)^{2}=16\left(y^{2}-8 x\right)$
$\Rightarrow y= \pm(x+2)$
Q. 25 (3)

Eq. of $A B$ is :
$\mathrm{T}=0$
$\mathrm{yy}_{1}=2\left(\mathrm{x}+\mathrm{x}_{1}\right)$
$2 \mathrm{x}-\mathrm{yy}_{1}+2 \mathrm{x}_{1}=0$
...(1)

$4 \mathrm{x}-7 \mathrm{y}+10=0$
.... (2)
equ. (1) \& (2) are identical
$\therefore \frac{2}{4}=\frac{\mathrm{y}_{1}}{7}=\frac{2 \mathrm{x}_{1}}{10}$
$y_{1}=\frac{7}{2} \quad \& \quad x_{1}=\frac{5}{2}$

Q. 26 (4)

$y^{2}=x-c ; \quad a=1 / 4$
Slope of tangent $=\frac{1}{t}$
so $\frac{1}{t_{1} t_{2}}=-1$
$\mathrm{t}_{1} \mathrm{t}_{2}=-1$

$\mathrm{A}\left(\mathrm{at}_{1} \mathrm{t}_{2}+\mathrm{C}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$
$a t_{1} t_{2}+C=0$
$\mathrm{C}=-\mathrm{at} \mathrm{t}_{2}$
$\mathrm{C}=\mathrm{a}$
$C=\frac{1}{4}$

Aliter

$$
\frac{c+a+0}{2}=c
$$

$\mathrm{c}+\mathrm{a}=2 \mathrm{c} \Rightarrow \mathrm{c}=\mathrm{a}$
$\Rightarrow \mathrm{c}=1 / 4$
Q. 27 (1)
$y^{2}=4 a x$
Slope $=\frac{1}{t}$
$\frac{1}{t_{1}}=\frac{2}{t_{2}}$

$\Rightarrow \mathrm{t}_{2}=2 \mathrm{t}_{1}$
$\mathrm{R}\left[\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right]$
$\mathrm{h}=\mathrm{at} \mathrm{t}_{2}, \mathrm{k}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\mathrm{k}=3 \mathrm{at}_{1} \Rightarrow \mathrm{t}_{1}=\frac{\mathrm{k}}{3 \mathrm{a}}$
$\mathrm{h}=2 \mathrm{at}_{1}{ }^{2}$
$h=2 a \frac{k^{2}}{9 a^{2}} \quad \Rightarrow k^{2}=\frac{9}{2} a h$
$\Rightarrow y^{2}=\frac{9}{2} a x$
Q. 28 (4)
$y^{2}+4 y-6 x-2=0$
$y^{2}+4 y+4-6 x-6=0 ; \quad a=\frac{3}{2}$
$(y+2)^{2}=6(x+1)$
$\mathrm{Y}^{2}=6 \mathrm{X} \quad$ vertex $(-1,-2)$
POI of tangents $\quad t_{1} t_{2}=-1$
$\left[\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right.$]
$\mathrm{h}+1=\mathrm{at} \mathrm{t}_{2}$
$\mathrm{h}+1=-\frac{3}{2}$
$2 h+2=-3$
$2 h+5=0 \Rightarrow 2 x+5=0$
Q. 29 (3)

Let point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$x_{1}-y_{1}+3=0$
C.O.C. w.r.t. $\left(x_{1}, y_{1}\right)$ of $y^{2}=4 a x$
$y_{1}=4\left(x+x_{1}\right)$
$y\left(x_{1}+3\right)=4 x+4 x_{1}$
$y_{1}+3 y-4 x-4 x_{1}=0$
$(3 y-4 x)+x_{1}(y-4)=0$
$\mathrm{L}_{1}+\lambda \mathrm{L}_{2}=0$
$\mathrm{L}_{1}=0 \& \mathrm{~L}_{2}=0$
$3 y=4 x$ $y=4$
$\mathrm{x}=3$
point $(3,4)$
Q. 30 (3)

Equation of PQ
$\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \mathrm{y}=2 \mathrm{x}+2 \mathrm{at}_{1} \mathrm{t}_{2}$
passes through $(-a, b)$
$\mathrm{b}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=-2 \mathrm{a}+2 \mathrm{at}_{1} \mathrm{t}_{2}$
$\mathrm{h}=\mathrm{at}_{1} \mathrm{t}_{2} \& \mathrm{k}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
POI of tangents
$\mathrm{h}=\mathrm{at}_{1} \mathrm{t}_{2} \quad \& \mathrm{k}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\frac{b k}{a}=-2 a+2 h$
$b k=-2 a^{2}+2 a h$
$b y=-2 a^{2}+2 a x$

by $=2 \mathrm{a}(\mathrm{x}-\mathrm{a})$

Q. 31 (3)

Tangent at P of $y^{2}=4 a x$
$\mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)$
.....(1)
Let Mid point (h, k)
$\mathrm{T}=\mathrm{S}$,
$y k-2 a(x+h)-4 a b=k^{2}-4 a(h+b)$
$y k-2 a x-2 a h+4 a h-k^{2}=0$
$\mathrm{yk}-2 \mathrm{ax}+2 \mathrm{ah}-\mathrm{k}^{2}=0$
(1) \& (2) are same
$\frac{\mathrm{k}}{\mathrm{y}_{1}}=\frac{-2 \mathrm{a}}{-2 \mathrm{a}}=\frac{2 \mathrm{ah}-\mathrm{k}^{2}}{-2 \mathrm{ax}_{1}}$

$\mathrm{k}=\mathrm{y}_{1} ; \quad-2 \mathrm{ax}_{1}=2 \mathrm{ah}-\mathrm{k}^{2}$

$$
-2 \mathrm{ax}_{1}=2 \mathrm{ah}-\mathrm{y}_{1}^{2} ; \mathrm{y}_{1}^{2}=4 \mathrm{ax}_{1}
$$

Mid point $-2 \mathrm{ax}_{1}=2 \mathrm{ah}-4 \mathrm{ax}_{1}$ $\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{t}}\right) 2 \mathrm{ah}=2 \mathrm{ax}_{1}$ $\mathrm{h}=\mathrm{x}_{1}$
Q. 32 (2)
$\mathrm{P}(1,2 \sqrt{2})$
Intersection point of $x=1$ with $y^{2}=8 \mathrm{x}$
$\mathrm{r}^{2}=\mathrm{SP}^{2}$

$=(1-2)^{2}+(2 \sqrt{2})^{2}$
$=1+8=9$
equation of circle as centre $(2,0) ; r=3$
$(x-2)+y^{2}=9$
Q. 33 (2)

Eq. of chord is $T=S_{1}$
$k y-2(x+h)=k^{2}-4 h$
...(1)
\because above eq. passes through focus $(1,0)$
$\therefore 0 . \mathrm{k}-2(1+\mathrm{h})=\mathrm{k}^{2}-4 \mathrm{~h}$

$$
\begin{aligned}
& -2-2 x=y^{2}-4 x \\
& y^{2}=2(x-1)
\end{aligned}
$$

Q. 34 (1)

From the property : the feet of the $\perp \mathrm{r}$ will lie on the tangent at vertex of the parabola.
$y=(x-1)^{2}-3-1$
$(x-1)^{2}=(y+4)$
Tangent at vertex of above parabola is $y+4=0$.
Q. 35 (1)

(Note: this is a High light)

Q. 36 (3)

$\Delta \mathrm{PUT} \cong \Delta \mathrm{PLT}$
Both Δ are congurrent
Hence PU = PL
$\mathrm{PM}=\mathrm{SP}$
$\mathrm{PM}-\mathrm{PL}=\mathrm{SP}-\mathrm{PL}$
$\mathrm{TN}=\mathrm{MU}=\mathrm{SL}$
Q. 37 (4)

$$
\begin{array}{cl}
(x-1)^{2}=8 y ; a=2 & x-1=0, y=2 \\
x^{2}=8 y ; & x=1, y=2
\end{array}
$$

vertex $(1,0)$

Focus (1, 2)
Radius of circle $=2$
$(x-1)^{2}+(y-2)^{2}=4$
$x^{2}+y^{2}-2 x-4 y+1=0$
Q. 38 (3)
$\mathrm{y}^{2}=4 \mathrm{a}\left(\mathrm{x}=\ell_{1}\right)$
$x^{2}=4 a\left(y-\ell_{2}\right)$
let the POC (h, k)
2 yy ' $=4 \mathrm{a}$
$2 \mathrm{x}=4 \mathrm{ay}$ '
$y^{\prime}=\left.\frac{2 a}{y}\right|_{(h, k)}=\frac{2 a}{k}$
$y^{\prime}=\left.\frac{x}{2 a}\right|_{(\mathrm{h}, \mathrm{k})}$
(1) and (2) are equal $=\frac{h}{2 \mathrm{a}}$
$\frac{2 \mathrm{a}}{\mathrm{k}}=\frac{\mathrm{h}}{2 \mathrm{a}}$
$h k=4 a^{2}$
$x y=4 a^{2}$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (C)

$t_{1} t_{2}=-1$, and the point of intersection tangent in $\left(a_{1} t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$
intersection point of Normals is
$\left(a\left(t_{1}{ }^{2}+t_{2}{ }^{2}+t_{1} t_{2}+2\right),-a t_{1} t_{2}\left(t_{1}+t_{2}\right)\right)$
using $t_{1} t_{2}=-1$, ordinate of both the section point are equal.
Q. 2 (C)
distance of focal chord from $(0,0)$ is p equation of chord ;

$$
2 x-\left(t_{1}+t_{2}\right) y+2 a t_{1} t_{2}=0
$$

$$
\begin{equation*}
2 \mathrm{x}-\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \mathrm{y}-2 \mathrm{a}=0 \tag{i}
\end{equation*}
$$

so perpendicular length from $(0,0)$
$\left|\frac{2 a}{\sqrt{4+\left(t_{1}-\frac{1}{t_{1}}\right)^{2}}}\right|=p \Rightarrow\left|\frac{2 a}{\left(t_{1}+\frac{1}{t_{1}}\right)}\right|=p$
$\Rightarrow\left(t_{1}+\frac{1}{t_{1}}\right)=\frac{2 a}{p}$
Now length of focal chord is $=a\left(t_{1}+\frac{1}{t}\right)^{2}$
$=a \frac{4 a^{2}}{p^{2}}=\frac{4 a^{3}}{p^{2}}$

Q. 3 (C)

Equation of $Q R$ is

$$
\begin{aligned}
& 2 x-\left(t_{1}+t_{2}\right) y+2 a_{1} t_{2}=0 \\
& 2 x-\left(t-\frac{1}{t}\right)-2 a=0 \ldots(1)
\end{aligned}
$$

$\perp \mathrm{r}$ distance from $(0,0)$ to the line (1) is

$$
\left|\frac{2 a}{4+\left(t-\frac{1}{t}\right)^{2}}\right|=\left|\frac{2 a}{\left(t+\frac{1}{t}\right)}\right|
$$

Area $=\frac{1}{2} \times \mathrm{QR} \times \perp \mathrm{r}$ distance from origin

$$
\begin{aligned}
& =\frac{1}{2} a\left(t+\frac{1}{t}\right)^{2} \times \frac{2 a}{\left(t+\frac{1}{t}\right)} \\
& A=a^{2}\left(t+\frac{1}{t}\right)
\end{aligned}
$$

Now the difference of ordination

$$
=\left|2 \mathrm{at}+\frac{2 \mathrm{a}}{\mathrm{t}}\right|=\left|2 \mathrm{a}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)\right|=2 \mathrm{a} \cdot \frac{\mathrm{~A}}{\mathrm{a}^{2}}=\frac{2 \mathrm{~A}}{\mathrm{a}}
$$

Q. 4 (A)

$P_{1}\left(a_{1}{ }^{2}, 2 a t_{1}\right), Q_{1}\left(\frac{a}{t_{1}^{2}}, \frac{-2 a}{t_{1}}\right)$
$P_{2}\left(\mathrm{at}_{2}^{2}, 2 a t_{2}\right), Q_{2}\left(\frac{\mathrm{a}}{\mathrm{t}_{2}^{2}}, \frac{-2 \mathrm{a}}{\mathrm{t}_{2}}\right)$
write the equation of $P_{1} P_{2}$ and $Q_{1} Q_{2}$ and then find the x -coordinate of their intersection.
Q. 5 (B)

Slope of OP \propto slope of OQ
$\mathrm{t}_{1} \mathrm{t}_{2}=-4$
also $t_{2}=-t_{1}-\frac{2}{t_{1}}$
$\frac{-4}{t_{1}}=\frac{-t_{1}^{2}-2}{t_{1}}$
$\mathrm{t}_{1}{ }^{2}=2$
$\mathrm{t}_{1}= \pm \sqrt{2}$
slope of normal at $P=-\mathrm{t}_{1} \Rightarrow \tan \theta=\sqrt{2} \Rightarrow \theta=\tan ^{-}$ ${ }^{1}(\sqrt{2})$
Q. 6 (A)

$y=m x+\frac{a}{m}$
$y=-\frac{1}{m} x$
solving (1) \& (2)
$x=\frac{-a}{1+m^{2}}$
$\mathrm{m}^{2}=\frac{-\mathrm{a}}{\mathrm{x}}-1$
put $m=-\frac{x}{y}$
from equation (2)
$\left(-\frac{x}{y}\right)^{2}=-\frac{a}{x}-1$
$\left(x^{2}+y^{2}\right) x+a y^{2}=0$
Q. 7
(C)

Equation of tangent at(1,2) is
$2 y=2(x+1)$
$x-y+1=0$
image of $(0,0)$ in the line (i) is $(-1,1)$
$\therefore \quad$ vertex of required parabola will be $(-1,1)$
Q. 8 (B)

Equation of tangent is $y=x+A \ldots$ (1)
and the equation of normal is
$y=m x-2 A m-A m^{3}$
where $m=-1$
$y=-x+2 A+A$
$x+y-3 A=0$
distance $b / w(1) \&(2)$ is $\left|\frac{3 A+A}{\sqrt{2}}\right|=2 \sqrt{2}$.
Q. 9 (C)

Slope of $O Q=\frac{2}{t_{2}}$
line parallel to AQ and passing through P

$y-2 \mathrm{at}_{1}=\frac{2}{\mathrm{t}_{2}}\left(\mathrm{x}-\mathrm{at}_{1}{ }^{2}\right)$
For point R put $\mathrm{y}=0$
$-2 \mathrm{at}_{1}=\frac{2}{\mathrm{t}_{2}}\left(\mathrm{x}-\mathrm{at}_{1}{ }^{2}\right) \quad \mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}$
$\mathrm{x}=\mathrm{at} \mathrm{t}_{1}{ }^{2}-\mathrm{at}_{1} \mathrm{t}_{2}$
$\mathrm{t}_{2}+\mathrm{t}_{1}=-\frac{2}{\mathrm{t}_{1}}$
$=a t_{1}\left(t_{1}-t_{2}\right)=2 \mathrm{at}_{1}\left(\mathrm{t}_{1}+\frac{1}{\mathrm{t}_{2}}\right)$
$x=2\left(a t_{1}{ }^{2}+a\right)$ focal distance
Q. 10

Slope of $\mathrm{PQ}=\frac{2}{\mathrm{t}_{1}+\mathrm{t}_{2}}=\mathrm{m}$
$\Rightarrow \mathrm{t}_{1}+\mathrm{t}_{2}=2 / \mathrm{m}$
$\mathrm{h}=\mathrm{a}\left(\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}^{2}+\mathrm{t}_{1} \mathrm{t}_{2}+2\right)$
$\mathrm{h}=\mathrm{a}\left(\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}-\mathrm{t}_{1} \mathrm{t}_{2}+2\right)$
$h=a\left(\frac{4}{m^{2}}-t_{1} t_{2}+2\right)$
$k=-a t_{1} t_{2}\left(t_{1}+t_{2}\right)=-a t_{1} t_{2}\left(\frac{2}{m}\right)$
$\mathrm{t}_{1} \mathrm{t}_{2}=-\frac{\mathrm{mk}}{2 \mathrm{a}}$
using (2) in (1)
$\mathrm{a}\left(\frac{4}{\mathrm{~m}^{2}}+\frac{\mathrm{mk}}{2 \mathrm{a}}+2\right)=\frac{8 \mathrm{a}+\mathrm{m}^{3} \mathrm{k}+4 \mathrm{am}^{2}}{2 \mathrm{am}^{2}}$
$2 \mathrm{xm}^{2}-\mathrm{m}^{3} \mathrm{y}=4 \mathrm{a}\left(2+\mathrm{m}^{2}\right)$
Q. 11 (C)

shortest distance always lie along the common normal Equation of normal at $\left(t^{2}, 2 t\right)$ to the parabola is
$\mathrm{y}+\mathrm{xt}=2 \mathrm{t}+\mathrm{t}^{3}$
above equation passes through the center of the circle $\mathrm{c}(0,12)$
$\therefore \quad 12=2 t+t^{3}$
$\mathrm{t}^{3}+2 \mathrm{t}-12=0$
$\mathrm{t}=2$
\therefore point is $(4,4)$
Q. 12 (B)

Subtangent $=2 x_{1}$
ordinate $=y_{1}$ are in G.P.
subnormal $=2 \mathrm{a}$
Q. 13 (A)

Equation of Normal In slope form
$y=m x-2 a m-a m^{3} ; a=\frac{1}{4}$
(A)
$6=3 m-\frac{2 m}{4}-\frac{m^{3}}{4}(3,6)$
$\mathrm{m}^{3}-10 \mathrm{~m}+24=0 \Rightarrow \mathrm{~m}=-4$
equation of normal
$y-6=-4(x-3) \Rightarrow y+4 x-18=0$
Q. 14 (C)

Slope of tangent $\tan \theta=\mathrm{t}$

$\tan (90-\theta)=\cot \theta=\frac{1}{\mathrm{t}}$
$\tan \theta=\mathrm{t}$
$\theta=\tan ^{-1} \mathrm{t}$
Q. 15 (B)

Let the tangent is $\mathrm{x}=0$ then, $\mathrm{p}_{2}=\left|\mathrm{at}_{1}{ }^{2}\right|$

$$
\begin{aligned}
& \mathrm{p}_{3}=\left|\mathrm{at}_{2}{ }^{2}\right| \\
& \mathrm{p}_{1}=\left|a \mathrm{at}_{1} \mathrm{t}_{2}\right|
\end{aligned}
$$

$\therefore \mathrm{p}_{2}, \mathrm{p}_{1}, \mathrm{p}_{3}$ are in G.P.
Q. 16 (C)
$h=a t_{1} t_{2}$
$\mathrm{k}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\mathrm{k}=-\frac{2 \mathrm{a}}{\mathrm{t}_{2}}$
$t_{1}=-\frac{2 a}{k}$

$\mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{-2}{\mathrm{t}_{1}} \Rightarrow \mathrm{t}_{2}+\mathrm{t}_{1}=\frac{-2}{\mathrm{t}_{1}}$
$\mathrm{h}=\mathrm{at} \mathrm{t}_{2}=\mathrm{at}\left(-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}\right)$
$\Rightarrow \mathrm{h}=\mathrm{a}\left(-\frac{2 \mathrm{a}}{\mathrm{k}}\right)\left(\frac{2 \mathrm{a}}{\mathrm{k}}+\frac{2}{2 \mathrm{a} / \mathrm{k}}\right)=-\frac{2 \mathrm{a}^{2}}{\mathrm{k}}\left(\frac{2 \mathrm{a}}{\mathrm{k}}+\frac{\mathrm{k}}{\mathrm{a}}\right)$
$\Rightarrow \mathrm{hk}^{2}=-4 \mathrm{a}^{3}-2 \mathrm{ak}^{2} \Rightarrow \mathrm{k}^{2}(\mathrm{~h}+2 \mathrm{a})+4 \mathrm{a}^{3}=0$
$\Rightarrow y^{2}(x+2 a)+4 a^{3}=0$
Q. 17 (D)
$\mathrm{T}=\mathrm{S}_{1}$
$\mathrm{yy}_{1}-2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)=\mathrm{y}_{1}^{2}-\mathrm{x}_{1}$
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \Rightarrow(2,1)$
$y-\frac{2}{4}(x+2)=1-2$

$4 y-2 x=0$
$x=2 y \Rightarrow$ solve with parabola
$y^{2}=2 y$
$y=0, y=2$
$\mathrm{x}=0, \mathrm{x}=4$
$(0,0)(4,2)$
$P Q=\sqrt{4+16}=2 \sqrt{5}$
Q. 18 (C)

Slope of $A B=\frac{2}{t}$
$B C=-\frac{t}{2}$
equation of BC
$y-2 a t=-\frac{t}{2}\left(x-a t^{2}\right)$
put $\mathrm{y}=0$
$x=4 a+a t^{2}$
in $\triangle \mathrm{BDC}$
$\mathrm{DC}^{2}=\mathrm{BC}^{2}-\mathrm{BD}^{2}$
$=16 a^{2}+4 a^{2} t^{2}-4 a^{2} t^{2}$
$=16 a^{2}$
$\mathrm{DC}=4 \mathrm{a}$
Q. 19 (B)

Equation of OP

$y=\frac{2}{t} x$
$\mathrm{k}=\frac{2}{\mathrm{t}} \mathrm{h}$
$y-0=-t(x-a) \Rightarrow y=-t x+a t$
$\Rightarrow \mathrm{k}=-\mathrm{th}+\mathrm{at} \Rightarrow \frac{2}{\mathrm{t}} \mathrm{h}=-\mathrm{th}+$ at from (1)

$$
\left(\mathrm{t}=\frac{2 \mathrm{~h}}{\mathrm{k}}\right)
$$

$h=\frac{a t^{2}}{2+t^{2}} \Rightarrow h=\frac{a \frac{4 h^{2}}{k^{2}}}{2+\frac{4 h^{2}}{k^{2}}} \Rightarrow h=\frac{2 a h^{2}}{k^{2}+2 h^{2}}$
$\Rightarrow \mathrm{k}^{2}+2 \mathrm{~h}^{2}=2 \mathrm{ah} \Rightarrow 2 \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{ax}=0$
Q. 20 (A)
$t y=x+a t^{2}$ $\tan \theta_{1}=\frac{1}{t_{1}} ; \tan \theta_{2}=\frac{1}{t_{2}}$

Circle
$\left(x-a t_{1}^{2}\right)(x-0)+(y-0)\left(y-2 a t_{1}\right)=0$
$\left(x-a t_{2}{ }^{2}\right)(x-0)+(y-0)\left(y-2 a t_{2}\right)=0$
For Intersection point R
$\mathrm{S}_{1}-\mathrm{S}_{2}=0$
$\Rightarrow\left(\mathrm{at}_{2}{ }^{2}-\mathrm{at}_{1}{ }^{2}\right) \mathrm{x}+\mathrm{y}\left(2 \mathrm{at} \mathrm{t}_{2}-2 \mathrm{at} \mathrm{t}_{1}\right)=0$
$\Rightarrow 2 y+\left(\mathrm{t}_{2}+\mathrm{t}_{1}\right) \mathrm{x}=0 \Rightarrow \mathrm{y}=-\left(\frac{\mathrm{t}_{1}+\mathrm{t}_{2}}{2}\right) \mathrm{x}$
$\tan \theta_{1}=\frac{1}{\mathrm{t}_{1}} \Rightarrow \cot \theta_{1}=\mathrm{t}_{1} \& \cot \theta_{2}=\mathrm{t}_{2}$
$\cot \theta_{1}+\cot \theta_{2}=\mathrm{t}_{1}+\mathrm{t}_{2}=-2 \tan \phi$

JEE-ADVANCED

MCQ/COMPREHENSION//COLUMN MATCHING

Q. 1 (A,B)

$y^{2}-2 y=4 x+7$
$(y-1)^{2}=4 x+8$
$(y-1)^{2}=4(x+2)$

Equation of required parabolas is

$$
(x+2)^{2}=8(y-1) \&(x+2)^{2}=-8(y-1)
$$

Q. 2 (B,C,D)

Point A is $\left(\frac{1}{2}, \frac{1}{2}\right)$
$\therefore \mathrm{M}$ is $(0,0)$
\therefore Eq. of Diretrix is $\mathrm{x}+\mathrm{y}=0$
\therefore Eq. of parabola is $(\mathrm{x}-1)^{2}+(\mathrm{y}-1)^{2}=\left(\frac{\mathrm{x}+\mathrm{y}}{\sqrt{2}}\right)^{2}$
Length of latus vectrum $=2(\perp \mathrm{r}$ distance from focus to the directrix)

$$
=2 .\left|\frac{1+1}{\sqrt{2}}\right|=2 \sqrt{2}
$$

Q. 3 (A,D)
$a t^{2}=2 a t$
point

$$
\begin{array}{ll}
\mathrm{t}=0, & \mathrm{t}=2 \\
(0,0), & (4,4)
\end{array}
$$

(I) when $\mathrm{P} \equiv(0,0)$

$$
x^{2}+y^{2}+\lambda(x)=0
$$

pass the $(1,0)$
$\lambda=-1$
equation tagent al $(0,0)$

$$
y^{2}=4 x
$$

Equ. $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{x}=0$

$$
\begin{aligned}
& y . y_{1}=2\left(x+x_{1}\right) \\
& x=0
\end{aligned}
$$

(II) when point $(4,4)$

$$
2 x-2 y+8=0
$$

$$
(x-4)^{2}+(y-4)^{2}+\mu(2 x-2 y+8)=0
$$

$$
\text { pass }(1,0)
$$

Equation

$$
x^{2}+y^{2}-13 x+2 y+12=0
$$

$\mathrm{h}=\frac{\mathrm{a}+\alpha}{2}, \mathrm{k}=\frac{\beta}{2}$
$\Rightarrow \alpha=2 \mathrm{~h}-\mathrm{a}, \beta=2 \mathrm{k}$
α, β satisfies the parabola
$\therefore \beta^{2}=4 \mathrm{a} \alpha$
$4 \mathrm{k}^{2}=4 \mathrm{a}(2 \mathrm{n}-\mathrm{a})$
$y^{2}=a(2 x-a)$
$y^{2}=2 a\left(x-\frac{a}{2}\right)$
Q. 5 (A,B)
$y^{2}-2 y-4 x-7=0$
$\mathrm{y}^{2}-2 \mathrm{y}+1-4 \mathrm{x}-8=0 \mathrm{LR}=4=\mathrm{L}$
$(y-1)^{2}=4(x+2)$
vertex $(-2,1)$ Axis $=x$-axis
New parabola
$(x+2)^{2}= \pm 8(y-1)$
$+\mathrm{ve}(\mathrm{x}+2)^{2}=8(\mathrm{y}-1)$
$\mathrm{x}^{2}+4 \mathrm{x}-8 \mathrm{y}+12=0$

- ve $x^{2}+4 x+4+8 y-8=0$
$x^{2}+4 x+8 y-4=0$
Q. 6 (B,C)
$\mathrm{y}=\tan \left(\tan ^{-1} \mathrm{x}\right)=\mathrm{x}$

$$
\mathrm{PS}=\mathrm{PM} \Rightarrow(\mathrm{~h}-1)^{2}+(\mathrm{k}-0)^{2}=\frac{(\mathrm{h}-\mathrm{k})^{2}}{2}
$$

$\Rightarrow 2\left(\mathrm{~h}^{2}+1-2 \mathrm{~h}+\mathrm{k}^{2}\right)=\mathrm{h}^{2}+\mathrm{k}^{2}-2 \mathrm{hk}$
$\Rightarrow \mathrm{h}^{2}+\mathrm{k}^{2}+2 \mathrm{hk}+2-4 \mathrm{~h}=0$
$\Rightarrow x^{2}+y^{2}+2 x y+2-4 x=0$
Q. 7 (A,B)
$\mathrm{y}^{2}=4 \mathrm{ax}$
(A) $\left(a^{2}, 2 a t\right)$ possible
(B) $\left(\mathrm{at}^{2},-2 \mathrm{at}\right)$ possible
(C) $\left(a \sin ^{2} t, 2 a \sin t\right)$ not possible because $\sin t$ will lies only in $[-1,1]$
so ans. (A) (B)
Q. 8 (A,B,D)

$y^{2}=4 x$, the other end of focal chord will be $(1,-2)$ and this satisfy options (A) (B) \& (D)
Q. 9 (A,C)

Option (A) \& (C) are used as a property.
Q. 10 (B,C)

Let the equation of tangent is $y=m x+\frac{a}{m}$
$y=m x+\frac{3}{m}$
$\tan 45^{\circ}=\left|\frac{m-3}{1+3 m}\right|$
$\Rightarrow \frac{\mathrm{m}-3}{1+3 \mathrm{~m}}= \pm 1 \quad \Rightarrow \mathrm{~m}-3= \pm(1+3 \mathrm{~m})$
$\Rightarrow \mathrm{m}=-2,1 / 2$
Put in equation (1)
$y=-2 x-\frac{3}{2}$ and $y=\frac{1}{2} x+6$

Q. 11 (A,C)

Tangent at P
$t y=x+a t^{2}$
$\mathrm{B}(0, \mathrm{at}) \mathrm{T}\left(-\mathrm{at}^{2}, 0\right)$

clearly B is the mid point of TP
Q. 12 (A, D)

$\mathrm{a}>0, \mathrm{~b}>0 \mathrm{a}<0, \mathrm{~b}<0$
Q. 13 Let the normal be $\mathrm{y}=\mathrm{mx}-4 \mathrm{~m}-2 \mathrm{~m}^{3}$
$\Rightarrow 0=6 \mathrm{~m}-4 \mathrm{~m}-2 \mathrm{~m}^{3} \Rightarrow \mathrm{~m}=0,1,-1$
$\mathrm{A}(0,0) ; \mathrm{B}(2,4) ; \mathrm{C}(2,-4)$
Area $=8$
Centroid $\equiv\left(\frac{4}{3}, 0\right), \quad$ circumcentre $\left.\equiv(5,0).\right]$
Q. 14 (A,B)

Tangents are perpendicular $\Rightarrow A B$ is focal chord and Normals meet on axis of parabola $\Rightarrow A B$ is double ordinate $\Rightarrow A B$ is latus rectum.
$\Rightarrow \quad Z(-3,1)$
$\therefore \quad$ equation of axis
$y-1=\frac{1}{4}(x+3)$

$$
\begin{gathered}
4 y-4=x+3 \\
x-4 y+7=0 \\
C Z=4 a=\sqrt{4^{2}+1^{2}}=\sqrt{17}
\end{gathered}
$$

Ans.
Q. 15 (A,B,C,D)
$\mathrm{h}=\mathrm{t}_{1} \mathrm{t}_{2}$
$\mathrm{k}=\mathrm{t}_{1}+\mathrm{t}_{2}$
$\mathrm{t}_{1}{ }^{2}=16 \mathrm{t}_{2}{ }^{2}$
$\mathrm{k}^{2}=\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+2 \mathrm{~h}=17 \mathrm{t}_{2}{ }^{2}+2 \mathrm{~h}=\frac{17 \mathrm{~h}}{4}+2 \mathrm{~h}=\frac{25 \mathrm{~h}}{4}$
\therefore Locus is $\mathrm{y}^{2}=\left(\frac{25}{4}\right) \mathrm{x}$.
Now verify all the options.
Q. 16 (A,B)

Equation of both the parabola is given by the equation
$(x-a)^{2}+(y-b)^{2}=x^{2}$
....... (i)
\& $(x-a)^{2}+(y-b)^{2}=y^{2}$
....... (ii)
(i) - (ii)
$\Rightarrow(x+y)(x-y)=0$
slope of common chord $=1 \&-1$
Q. 17 (A, B)

Eq. of circle is given by

$$
\begin{equation*}
\left(x-\frac{p}{2}\right)^{2}+y^{2}=r^{2} \tag{1}
\end{equation*}
$$

Directrix : $x=-\frac{p}{2}$ in tangent to the circle ...(1)
$\therefore \mathrm{r}=\mathrm{p}$
\therefore Eq. of circle is $\left(\mathrm{x}-\frac{\mathrm{p}}{2}\right)^{2}+\mathrm{y}^{2}=\mathrm{p}^{2}$.
solve circle \& parabola for point of intersection.
Q. 18 (A, D)

Equation of PA is
$y=\frac{2}{t} x$
$D\left(-a, \frac{-2 a}{t}\right) M(-a, 2 a t)$
write the equation of circle with MD as diameter and then solve with x - axis

Comprehenssion \# 1 (Q. No. 19 to 21)

Q. 19
Q. 20
Q. 21
(D)

(i) Tangent and normal are angle bisectors of focal radius and perpendicular to directrix.
\therefore The equation of circle circumscribing $\triangle \mathrm{APB}$, is $(x-5)(x+3)+(y-4)(y-4)=0 \Rightarrow x^{2}+y^{2}-2 x=$ 31
(ii) Two parabolas are called equal when their length of latus rectum is same.
Also, $\quad l(\mathrm{~L} \cdot \mathrm{R})=4$ (Distance of focus from vertex)
$=4 \sqrt{(3-1)^{2}+(2-0)^{2}}=4 \sqrt{8}=8 \sqrt{2}$
(iii) The area of quadrilateral formed by tangent and normals at ends of latus-rectum $=8(\mathrm{VS})^{2}$
$=8(4+4)=8(8)=64$

Comprehenssion \# 2 (Q. No. 22 to 24)

Q. 22 (A,B,C,D)
Q. 23 (B,C,D)
Q. 24 (B,C)[

We have $P M=1+t^{2}$

$$
\begin{aligned}
& \mathrm{PS}=\sqrt{\left(\mathrm{t}^{2}-1\right)^{2}+4 \mathrm{t}^{2}}=\left(\mathrm{t}^{2}+1\right) \\
& \mathrm{MS}=\sqrt{4+4 \mathrm{t}^{2}}=2 \sqrt{1+\mathrm{t}^{2}} \\
& \Rightarrow \quad 2 \sqrt{1+\mathrm{t}^{2}}=1+\mathrm{t}^{2}
\end{aligned}
$$

$\therefore \quad \mathrm{PM}=1+\mathrm{t}^{2}=4=\mathrm{a}=\mathrm{k}$ (Given)
Hence $C_{1}: y^{2}=4(x+1)$
Equation of tangent to C_{1} at $(0,2)$ is
$2 y=4\left(\frac{x+0}{2}+1\right) \Rightarrow y=x+2$.

Now circle which touches above line at $(0,2)$, is $x^{2}+(y-2)^{2}+\lambda(x-y+2)=0$.
As above circle is passing through the point $(0,-2)$, so

$0+16+\lambda(4)=0 \Rightarrow \lambda=-4$
$\therefore \quad C_{2}: x^{2}+(y-2)^{2}-4(x-y+2)=0$
or $\quad C_{2}: x^{2}+y^{2}-4 x-4=0$.
Now $\mathrm{C}_{3}: \frac{(\mathrm{x}-2)^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1, \quad \mathrm{a}=2 \sqrt{2}$ and $\mathrm{b}=2$
So $C_{3}: \frac{(x-2)^{2}}{8}+\frac{y^{2}}{4}=1$.
(i) Given $C_{1}: y^{2}=4(x+1)$
(A) Minimum length of focal chord $=$ Latus rectum $=$ 4.
(B) Locus of point of intersection of perpendicular tangents $=$ Director circle which is $x+2=0$.
(C) Clearly distance between focus and tangent at vertex is 1 .
(D) Foot of the directrix is clearly $(-2,0)$.

We have $C_{3}: \frac{(x-2)^{2}}{8}+\frac{y^{2}}{4}=1$
(A) $e=\sqrt{1-\frac{4}{8}}=\frac{1}{\sqrt{2}}$
(B) Focal length $=2$ ae $=2 \times 2 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right)=4$
(C) Latus-rectum $=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=2\left(\frac{4}{2 \sqrt{2}}\right)=2 \sqrt{2}$
(D) Director circle is $(x-2)^{2}+y^{2}=12 \Rightarrow x^{2}+y^{2}-$ $4 \mathrm{x}-8=0$

common tangents to the curves C_{1} and C_{2} and latusrectum of C_{1}, is isosceles triangle.
Required area $=\frac{1}{2} \times 4 \times 2=4$ square units.
$(\mathrm{A}) \rightarrow(\mathrm{s}),(\mathrm{B}) \rightarrow(\mathrm{r}),(\mathrm{C}) \rightarrow(\mathrm{q}),(\mathrm{D}) \rightarrow(\mathrm{p})$
Equation AB

$y-2 a t_{1}=\frac{2}{t_{1}+t_{2}}\left(x-a t_{1}^{2}\right)$
(A) $A B$ is a normal chord $t_{2}=-t_{1}-\frac{2}{t_{1}}$
(B) AB is a focal chord $t_{1} t_{2}=-1$
(C) $A B$ subtends 90° at the origin then

$$
\begin{array}{r}
\frac{2 a t_{1}-0}{a t_{1}^{2}-0} \times \frac{2 a t_{2}-0}{a t_{2}^{2}-0}=-1 \\
t_{1} t_{2}=-4 \Rightarrow t_{2}=-\frac{4}{t_{1}}
\end{array}
$$

(D) AB is inclinded at $4 s^{\circ}$ to the axis then slope
$\frac{2}{t_{1}+t_{2}}=1$
$t_{1}+t_{2}=2$
$\mathrm{t}_{2}=-\mathrm{t}_{1}+2$
Q. $26 \quad \mathrm{~A} \rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T} ; \mathbf{B} \rightarrow \mathrm{S}, \mathrm{T} ; \mathbf{C} \rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$

If three normals drawn to any parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ from a given point (h, k) be real, then $\mathrm{h}>2 \mathrm{a}$.
(A) $\because y^{2}-4 x-2 y+5=0$
$\Rightarrow(y-1)^{2}=4(x-1)$
Let $\mathrm{y}-1=\mathrm{Y}$ and $\mathrm{x}-1=\mathrm{x}$
$\therefore \quad y^{2}=4 x$
On comparing with $\mathrm{y}^{2}=4 \mathrm{ax}$
$\therefore \quad \mathrm{a}=1$
According to question $x>2 a$
$\Rightarrow \mathrm{x}-1>2$ or $\mathrm{x}>3$
$\therefore \quad x=4,5,6,7,8(P, Q, R, S, T)$
(B) $\because 4 y^{2}-32 x+4 y+65=0$
$\Rightarrow 4\left(\mathrm{y}^{2}+\mathrm{y}\right)=32 \mathrm{x}-65$
$\Rightarrow 4\left(\left(y+\frac{1}{2}\right)^{2}-\frac{1}{4}\right)=32 x-65$
$\Rightarrow 4\left(y+\frac{1}{2}\right)^{2}=32 x-64$
or $\left(y+\frac{1}{2}\right)^{2}=8(x-2)$
Let $\mathrm{y}+\frac{1}{2}=\mathrm{y}$ and $\mathrm{x}-2=\mathrm{x}$
$\therefore \mathrm{y}^{2}=8 \mathrm{x}$
on comparing with $y^{2}=4 a x$
$\therefore \mathrm{a}=2$
According to question $x>2 a$
$\Rightarrow \mathrm{x}-2>4 \therefore \mathrm{x}>6$
$\therefore \mathrm{x}=7,8(\mathrm{~S}, \mathrm{~T})$
(C) $\because 4 y^{2}-16 x-4 y+41=0$
$\Rightarrow 4\left(y^{2}-y\right)=16 x-41$
$\Rightarrow 4\left\{\left(y-\frac{1}{2}\right)^{2}-\frac{1}{4}\right\}=16 x-41$
$\Rightarrow 4\left(y-\frac{1}{2}\right)^{2}=16 x-40$
or $\left(y-\frac{1}{2}\right)^{2}=4\left(x-\frac{5}{2}\right)$
Let $\mathrm{y}-\frac{1}{2}=\mathrm{y}$ and $\mathrm{x}-\frac{5}{2}=\mathrm{x}$
$\therefore y^{2}=4 x$
On comparing with $\mathrm{y}^{2}=4 \mathrm{ax} \quad \therefore \mathrm{a}=1$
According to question
$x>2 a \Rightarrow x-\frac{5}{2}>2$ or $x>\frac{9}{2}$
$\therefore \mathrm{x}=5,6,7,8(\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T})$
Q. $27(\mathrm{~A}) \rightarrow(\mathrm{r}),(\mathrm{B}) \rightarrow(\mathrm{s}),(\mathrm{C}) \rightarrow(\mathrm{p}),(\mathrm{D}) \rightarrow(\mathrm{q})$
$y^{2}=4 a x$

$$
\begin{aligned}
& \mathrm{T}=\mathrm{S}_{1} \\
& \mathrm{~T} \equiv \mathrm{ky}-2 \mathrm{a}(\mathrm{x}, \mathrm{x}+\mathrm{h}) \\
& \mathrm{S}_{1}=\mathrm{k}^{2}-2 \mathrm{ah}
\end{aligned}
$$

(A) Equation

$$
k y-2 a(x+h)=k^{2}-4 a h
$$

This line pass thoh ($\mathrm{a}, 0$)

$$
\begin{aligned}
& 0-2 \mathrm{a}(\mathrm{a}+\mathrm{h})=\mathrm{k}^{2}-4 \mathrm{ah} \\
& -2 \mathrm{a}^{2}-2 \mathrm{ah}=\mathrm{k}^{2}-4 \mathrm{ah} \\
& \mathrm{k}^{2}+2 \mathrm{ah}-2 \mathrm{a}^{2}=0
\end{aligned}
$$

Locus $y^{2}+2 \mathrm{ax}-2 \mathrm{a}^{2}=0 \mathrm{~A} \rightarrow \mathrm{r}$
(B) We know that equation of normal

$$
\begin{align*}
& y=m x-\mathrm{am}^{3}-2 a m \tag{i}\\
& \mathrm{ky}-2 \mathrm{ax}=\mathrm{k}^{2}-2 \mathrm{ah} \\
& \mathrm{y}=\frac{2 \mathrm{a}}{\mathrm{k}} \mathrm{x}+\frac{\mathrm{k}^{2}-2 \mathrm{ah}}{\mathrm{k}} . \tag{ii}
\end{align*}
$$

comparing equation (i) and (ii) $\mathrm{m}=\frac{2 \mathrm{a}}{\mathrm{k}} \mathrm{am}^{3}-2 \mathrm{am}$
$=\frac{\mathrm{k}^{2}-2 \mathrm{ah}}{\mathrm{k}}$
put $\mathrm{m}=\frac{2 \mathrm{a}}{\mathrm{k}}$ in equation (2)
we get the locus $y^{4}+2 a(2 a-x) y^{2}+8 a^{4}=0 B \rightarrow s$
(C) $\mathrm{h}=\frac{\mathrm{a}\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}\right)}{2}$

$\mathrm{k}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
or $\frac{2}{t_{1}}=-\frac{2}{t_{2}}$

$$
\mathrm{t}_{1}+\mathrm{t}_{2}=0 \mathrm{k}=0 \Rightarrow \mathrm{y}=0
$$

(D) Length of chord $=\ell$
$=-\frac{4}{m^{2}} \sqrt{a\left(1+m^{2}\right)(a-m c)}=\ell$
where $m=\frac{2 a}{k}$
$c=\frac{\mathrm{k}^{2}-2 \mathrm{ah}}{\mathrm{k}}$
Let PQ be a variable focal chord of the parabola y^{2} $=4 \mathrm{ax}$ where vertex is A. Locus of, centroid of triangle APQ is a parabola ' P_{1},

NUMERICAL VALUE BASED

Q. 1
 (4)

$h^{2}=a b$
$\Rightarrow 4=\lambda .1 \Rightarrow \lambda=4$
Q. 2 (20)
$\mathrm{a}=\perp^{\mathrm{r}}$ distance from $(3,4)$ to the tangent at vertex
$=\left|\frac{3+4-7-5 \sqrt{2}}{\sqrt{2}}\right|$
$\mathrm{a}=5$
LR $=4 \mathrm{a}=20$
Q. 3 (2)
$\mathrm{y}^{2}=8 \mathrm{x} ; \mathrm{a}=2$
Area $=\frac{\left(y_{1}^{2}-8 x_{1}\right)^{3 / 2}}{4} ;(4,6) ;$
$=\frac{(36-32)^{3 / 2}}{4}=\frac{8}{4}=2$ sq. units
Q. 4 (3)
$y=m x-2 a m-a m^{3}$
Here $\mathrm{a}=1$
$0=\mathrm{cm}-2 \mathrm{~m}-\mathrm{m}^{3}$
$m^{3}+(2-c) m=0$
$\mathrm{m}=0$
$\mathrm{m}^{2}=\mathrm{c}-2 \Rightarrow \mathrm{c}>2$
sum $m_{1}+m_{2}+m_{3}=0$
$\Sigma \mathrm{m}_{1} \mathrm{~m}_{2}=\frac{2 \mathrm{a}-\mathrm{h}}{\mathrm{a}}$
$\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3}=\frac{-\mathrm{k}}{\mathrm{a}}$
$\mathrm{m}_{1} \mathrm{~m}_{2}=2-\mathrm{c}$
$-1=2-\mathrm{c}$
$\Rightarrow \mathrm{c}=3$
Q. 5 (1)
I.F. $\left(a^{2}, a-2\right)$
$S \equiv y^{2}-2 x$

$$
S \equiv y^{2}-2 x
$$

$y-2=\frac{-6}{6}(x-2)$
$y-2=-x+2$
$\mathrm{L} \equiv \mathrm{x}+\mathrm{y}-4=0$

$S_{1} \equiv(a-2)^{2}-2 a^{2}<0$
$a^{2}+4-4 a-2 a^{2}<\quad \Rightarrow \quad a^{2}+4 a-4>0$
$-4 a-a^{2}+4<0$
$\mathrm{L}_{1}<0$
$a^{2}+4 a+4>8$
$a^{2}+a-6<0$

$$
(a+2)^{2}>8
$$

$a+2<-2 \sqrt{2}$
$-3<a<2$
a>-2+2 $\sqrt{2} \quad$ a<-2 $\sqrt{2}-2$
$\Rightarrow \quad-2+2 \sqrt{2}<\mathrm{a}<2$
so integral value of a is equal to 1 only.
Q. 6 (3)

Here $h^{2}-\mathrm{ab}=(-12)^{2}-9 \cdot 16=144-144=0$ Also Δ $\neq 0$
\therefore the equation represents a parabola
Now, the equation is $(3 x-4 y)^{2}=5(4 x+3 y+12)$
Clearly, the lines $3 x-4 y=0$ and $4 x+3 y+12=0$ are perpendicular to each other. So let
$\frac{3 x-4 y}{\sqrt{3^{2}+(-4)^{2}}}=Y, \frac{4 x+3 y+12}{\sqrt{4^{2}+3^{2}}}=X$
The equation of the parabola becomes $\quad \mathrm{Y}^{2}=\mathrm{X}=4$.
$\frac{1}{4} \mathrm{X}$
\therefore Here $\mathrm{a}=1 / 4$ in the standard equation as $\ell=2 \mathrm{a}=$
$1 / 2$
$\Rightarrow \quad 6 \ell=3$

Q. 7 (0)

The point $\mathrm{P}(-2 \mathrm{a}, \mathrm{a}+1)$ will be an interior point of both the circle $x^{2}+y^{2}-4=0$ and the parabola $y^{2}-4 x$ $=0$.
$\therefore(-2 a)^{2}+(a+1)^{2}-4<0$
i.e. $5 a^{2}+2 a-3<0$

and $(a+1)^{2}-4(-2 a)<0$
i.e. $\mathrm{a}^{2}+10 \mathrm{a}+1<0$

The required values of a will satisfy both (i) and (ii)
From (i), $(5 a-3)(a+1)<0$
\therefore by sign scheme we get $-1<\mathrm{a}<3 / 5$
Solving (ii), the corresponding equation is
$a^{2}+10 a+1=0$ or $a=\frac{-10 \pm \sqrt{100-4}}{2}=-5$
$\pm 2 \sqrt{6}$
\therefore by sign scheme for (ii)
$-5-2 \sqrt{6}<a<-5+2 \sqrt{6}$
The set of values of a satisfying (iii) and (iv) is $-1<\mathrm{a}$ $<-5+2 \sqrt{6}$
Q. 8 (2)

slope of $P Q=\frac{2 a(p-q)}{a(p-q)(p+q)}=1$
$\therefore \quad \mathrm{p}+\mathrm{q}=2$
(18)

As the axis is parallel to the y-axis, it will be $x-\alpha=0$ for some α and the tangent to the vertex (which is perpendicular to the axis) will be $y-\beta=0$ for some β.

Hence the equation of the parabola will be of the form $(x-\alpha)^{2}=4 a(y-\beta)$
when α, β, a are unknown constants, 4 a being latus rectum.
(1) passes through $(0,4),(1,9)$ and $(-2,6)$ so

$(0-\alpha)^{2}=4 a(4-\beta)$,
i.e. $\alpha^{2}=4 \mathrm{a}(4-\beta)$
and $(1-\alpha)^{2}=4 \mathrm{a}(9-\beta)$
i.e. $1-2 \alpha+\alpha^{2}=4 a(9-\beta)$
and $(-2-\alpha)^{2}=4 \mathrm{a}(6-\beta)$
i.e. $4+4 \alpha+\alpha^{2}=4 \mathrm{a}(6-\beta)$
$\therefore \quad \alpha=-\frac{3}{4}$
$\therefore \quad a=\frac{5}{40}=\frac{1}{8} \quad$ or $\quad \beta=\frac{23}{8}$
\therefore from (i), the equation of the parabola is
$\left(x+\frac{3}{4}\right)^{4}=4 \cdot \frac{1}{8} \cdot\left(y-\frac{23}{8}\right)$
or $\quad x^{2}+\frac{3}{2} x+\frac{9}{16}=\frac{1}{2} y-\frac{23}{16}$
or $\quad x^{2}+\frac{3}{2} x-\frac{1}{2} y+2=0$
$\therefore 2 x^{2}+3 x-y+4=0 \Rightarrow \quad y=2 x^{2}+3 x+4$
$\Rightarrow \quad \alpha=2 \times 2^{2}+3 \times 2+4=18$
Q. 10 (16)

$y=m x+\frac{a}{m}$
equation of OP is
$y=-\frac{1}{m} x$
$\mathrm{OP}=\frac{\mathrm{a} / \mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}}$
equation (ii) meets the parabola at Q
$\frac{1}{m^{2}} x^{2}=4 a x \quad \Rightarrow \quad x=4 a m^{2}, y=-4 a m$
$\therefore \quad \mathrm{OQ}=4 \mathrm{am} \sqrt{1+\mathrm{m}^{2}}, \quad \mathrm{OP} . \mathrm{OQ}=4 \mathrm{a}^{2}$
Q. 11 (23)
$\mathrm{x}_{1}=2\left(\mathrm{y}+\mathrm{y}_{1}\right)$
$6 x=2(y+9)$
$3 \mathrm{x}=\mathrm{y}+9 \quad 3 \mathrm{x}-\mathrm{y}-9=0$
from equation of family circle is $S+\lambda L=0$
$S \equiv(x-6)^{2}+\left(y-91^{2}+k(3 x-y-9)=0\right.$

is passes through $(0,1)$
$36+64+k(-10)=0$
$100-10 \mathrm{k}=0 \quad \mathrm{k}=10$
$\mathrm{x}^{2}+36-12 \mathrm{x}+\mathrm{y}^{2}+81-18 \mathrm{y}+30 \mathrm{x}-30 \mathrm{y}-90=0$
$x^{2}+y^{2}+18 x-28 y+27=0$

Q. 12 (3)

Equation of parabola is $y^{2}=4 a x$
Let $A \equiv\left(a t_{1}^{2}, 2 a t_{1}\right) B \equiv\left(a t_{2}{ }^{2}, 2 a t_{2}\right), C \equiv\left(a t_{3}{ }^{2}, 2 a t_{3}\right)$
Equation of the tangents to parabola (1) at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are

$$
\begin{align*}
& \mathrm{yt}_{1}=\mathrm{x}+\mathrm{at}_{1}{ }^{2} \tag{2}\\
& \mathrm{yt}_{2}=\mathrm{x}+\mathrm{at}_{2}{ }_{2} \tag{3}\\
& \mathrm{yt}_{3}=\mathrm{x}+\mathrm{at}_{3}{ }^{2} \tag{4}
\end{align*}
$$

and
Let the points of intersection of lines (2) , (3) be P; (3), (4) be Q and (2), (4) be R.

Then $\mathrm{P} \equiv\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right), \mathrm{Q} \equiv\left(\mathrm{at}_{2} \mathrm{t}_{3}, \mathrm{a}\left(\mathrm{t}_{2}\right.\right.$ $\left.\left.+\mathrm{t}_{3}\right)\right), \mathrm{R} \equiv\left(\mathrm{at}_{1} \mathrm{t}_{3}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{3}\right)\right)$

Now area of $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& \Delta_{1}=\text { modulus of } \frac{1}{2}\left|\begin{array}{lll}
a t_{1}{ }^{2} & 2 a t_{1} & 1 \\
\mathrm{at}_{2}{ }^{2} & 2 a t_{2} & 1 \\
\mathrm{at}_{3}{ }^{2} & 2 a t_{3} & 1
\end{array}\right| \\
& =\text { modulus of } \frac{1}{2} \text {. a. } 2 \mathrm{a}\left|\begin{array}{lll}
t_{1}{ }^{2} & t_{1} & 1 \\
t_{2}{ }^{2} & t_{2} & 1 \\
t_{3}{ }^{2} & t_{3} & 1
\end{array}\right| \\
& =\mathrm{a}^{2}\left|\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)\left(\mathrm{t}_{2}-\mathrm{t}_{3}\right)\left(\mathrm{t}_{3}-\mathrm{t}_{1}\right)\right| \\
& \text { Area of } \triangle \mathrm{PQR} \\
& \Delta_{2}=\text { modulus of } \frac{1}{2}\left|\begin{array}{lll}
a t_{1} t_{2} & a\left(t_{1}+t_{2}\right) & 1 \\
a t_{2} t_{3} & a\left(t_{2}+t_{3}\right) & 1 \\
a t_{3} t_{1} & a\left(t_{3}+t_{1}\right) & 1
\end{array}\right| \\
& \text { = modulus of } \frac{a^{2}}{2}\left|\begin{array}{lll}
t_{1} t_{2} & t_{1}+t_{2} & 1 \\
t_{2} t_{3} & t_{2}+t_{3} & 1 \\
t_{3} t_{1} & t_{3}+t_{1} & 1
\end{array}\right| \\
& \text { = modulus of } \frac{a^{2}}{2}\left|\begin{array}{ccc}
t_{2}\left(t_{1}-t_{3}\right) & t_{1}-t_{3} & 0 \\
t_{3}\left(t_{2}-t_{1}\right) & t_{2}-t_{1} & 0 \\
t_{3} t_{1} & t_{3}+t_{1} & 1
\end{array}\right| \\
& {\left[\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}, \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}\right]} \\
& =\text { modulus of } \frac{\mathrm{a}^{2}}{2}\left(\mathrm{t}_{1}-\mathrm{t}_{3}\right)\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)\left(\mathrm{t}_{2}-\mathrm{t}_{3}\right) \\
& =\frac{\mathrm{a}^{2}}{2}\left|\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)\left(\mathrm{t}_{2}-\mathrm{t}_{3}\right)\left(\mathrm{t}_{3}-\mathrm{t}_{1}\right)\right| \\
& \text { Clearly } \frac{\Delta_{1}}{\Delta_{2}}=\frac{2}{1}
\end{aligned}
$$

Q. 13 (4)

Equation of parabola

$$
\begin{aligned}
& y^{2}=4 a x \\
& O Q=\sqrt{a^{2} t_{2}^{4}+4 a^{2} t_{2}^{2}} \\
& =a t_{2} \sqrt{t_{2}^{2}+4} \\
& Q Q \geq 2 \sqrt{2} a \cdot 2 \sqrt{3} \\
& \geq 4 \sqrt{6} a \quad \text { as } t_{2}=t_{1}-\frac{2}{t_{1}}
\end{aligned}
$$

Q. 14 (3)

$$
\begin{aligned}
& y=m x-2 a m-\mathrm{am}^{3} \quad \text { Here } \mathrm{a}=1 \\
& 0=\mathrm{cm}-2 \mathrm{~m}-\mathrm{m}^{3} \\
& \mathrm{~m}^{3}+(2-\mathrm{c}) \mathrm{m}=0 \\
& \mathrm{~m}=0 \\
& \Rightarrow \quad c>2 \\
& \text { sum } m_{1}+m_{2}+m_{3}=0 \\
& \Sigma \mathrm{~m}_{1} \mathrm{~m}_{2}=\frac{2 \mathrm{a}-\mathrm{h}}{\mathrm{a}} \\
& \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3}=\frac{-\mathrm{k}}{\mathrm{a}} \\
& \mathrm{~m}_{1} \mathrm{~m}_{2}=2-\mathrm{c} \\
& -1=2 \text { - } \mathrm{c} \\
& \Rightarrow \quad \mathrm{c}=3
\end{aligned}
$$

KVPY

PREVIOUS YEAR'S

Q. 1
 (B)

Any normal
$y=m x-2 a m-\mathrm{am}^{3}$ Here $a=3 / 2$
through $(\lambda, 0)$
$0=\mathrm{m} \lambda-2 \mathrm{am}-\mathrm{am}^{3}$
$\mathrm{m}=0, \lambda=2 \mathrm{a}+\mathrm{am}^{3}$
$\mathrm{m}^{2}=\frac{\lambda}{\mathrm{a}}-2>0$
$\lambda>2 \mathrm{a} \Rightarrow \lambda>3$
$(2 x-4)^{2}=4 x$

$$
\begin{aligned}
& (x-2)^{2}=x \\
& x^{2}-5 x+4=0 \\
& x=1,4
\end{aligned}
$$

C ($1,-2$)
B $(4,4) \quad \because \mathrm{AB}=\mathrm{AC}$
$\sqrt{(\alpha-4)^{2}+16}=\sqrt{(\alpha-1)^{2}+4}$
On solving, we get $\alpha=\frac{9}{2}$
Q. 3 (D)

$x+y^{2}=x^{2}+y=12$
curve (1) $x+y^{2}=12$

$$
y^{2}=-(x-12)
$$

Intersection on x -axis $(12,0)$
Intersection on y-axis $(0, \pm \sqrt{12})$
curve (2) $x^{2}+y=12$
$x^{2}=-(y-12)$
Intersection on x -axis $=(\pm \sqrt{12}, 0)$
Intersection on y-axis $=(0,12)$
four intersection
(A)

$\because \mathrm{OB} \perp \mathrm{OA}$
So, $\quad \mathrm{t}_{1} \mathrm{t}_{2}=-1$
Now $\frac{\mathrm{h}}{2}=\frac{\mathrm{t}_{1}+\mathrm{t}_{2}}{2}$
$\mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{h}$
also $\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}=\mathrm{k}$
$\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}-2 \mathrm{t}_{1} \mathrm{t}_{2}=\mathrm{k}$
$h^{2}+2=k$
locus is $x^{2}+2=y$
Q. 5
(B)
(h,

Curve, S : $(\mathrm{y}-\mathrm{k})^{2}=4(\mathrm{x}-\mathrm{h})$
LLR $=4$; Clearly $\mathrm{k}=1 ; \Rightarrow \mathrm{A}(\mathrm{h}, 1) \& ' \mathrm{M}$ ' is focus (h $+1,1)$
So D (h+1,3)
$\mathrm{S}_{(0,0)}=0 \Rightarrow \mathrm{k}^{2}=-4 \mathrm{~h}$
$\Rightarrow \mathrm{h}=\frac{-1}{4}$
$\Rightarrow \mathrm{D}\left(\frac{3}{4}, 3\right)$
Now; $\tan \alpha=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|=\left|\frac{\frac{8}{3}-2}{1+\frac{8}{3} \times 2}\right|=\frac{2}{19}$
where, $\mathrm{m}_{1}=\frac{3-1}{\frac{3}{4}-0}=\frac{2}{\frac{3}{4}}=\frac{8}{3}$
$\mathrm{m}_{2}=\frac{3-1}{1}=2$

JEE MAIN

PREVIOUS YEAR'S

Q. 1 (1)

Equation of tangent $: y=m x+\frac{3}{2 m}$
$\mathrm{m}_{\mathrm{T}}=\frac{1}{2} \quad(\because$ perpendicular to line $2 \mathrm{x}+\mathrm{y}=1)$
$\therefore \quad$ tangent is: $y=\frac{x}{y}+3 \Rightarrow x-2 y+6=0$
Q. 2 (9)

Equation of tangent of A

ty $=x+t^{2}$
$\mathrm{x}-\mathrm{yt}+\mathrm{t}^{2}=0$
$\left|\frac{3-0+t^{2}}{\sqrt{1+t^{2}}}\right|=3$
$\left(3+t^{2}\right)^{2}=9\left(1+t^{2}\right)$
$\mathrm{t}=0, \pm \sqrt{3}$
Point A $(3,2 \sqrt{3})$ in first quadrant
For point B foot of perpendicular from c to tangent
$\frac{x-3}{1}=\frac{y-0}{-\sqrt{3}}=-\frac{(3-0+3)}{4} \Rightarrow x=\frac{3}{2}$
$\mathrm{c}=\frac{3}{2}$ and $\mathrm{a}=3$
$2(a+c)=9$
Q. 3
(2)
$\mathrm{h}=\frac{\mathrm{at}^{2}+\mathrm{a}}{2}, \mathrm{k}=\frac{2 \mathrm{at}+0}{2}$
$\Rightarrow \mathrm{t}^{2}=\frac{2 \mathrm{~h}-\mathrm{a}}{\mathrm{a}}$ and $\mathrm{t}=\frac{\mathrm{k}}{\mathrm{a}}$

$\Rightarrow \frac{\mathrm{k}^{2}}{\mathrm{a}^{2}}=\frac{2 \mathrm{~h}-\mathrm{a}}{\mathrm{a}}$
\Rightarrow Locus of (h, k) is $\mathrm{y}^{2}=\mathrm{a}(2 \mathrm{x}-\mathrm{a})$

$$
\Rightarrow y^{2}=2 a\left(x-\frac{a}{2}\right)
$$

Its directrix is $x-\frac{a}{2}=-\frac{a}{2} \Rightarrow x=0$
Q. 4 (4)

For standard parabola
For more than 3 normals (on axis)
$x>\frac{L}{2}$ (where L is length of L.R.)
For $y^{2}=2 x$
L.R. $=2$
for (a, 0)
$a>\frac{\text { L.R. }}{2} \Rightarrow a>1$
Q. 5 (1)

Given $\mathrm{y} 2=4 \mathrm{x}$
Mirror image on $\mathrm{y}=\mathrm{x} \Rightarrow \mathrm{C}: \mathrm{x} 2=4 \mathrm{y}$
$2 x=4 \cdot \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{x}{2}$
$\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{P}(2,1)}=\frac{2}{2}=1$
Equation of tangent at $(2,1)$

$$
\begin{aligned}
& \Rightarrow \mathrm{y}-1=1(\mathrm{x}-2) \\
& \Rightarrow \mathrm{x}-\mathrm{y}=1
\end{aligned}
$$

Q. 6 (2)

Tangent to parabola
$2 \mathrm{y}=2(\mathrm{x}+6)-20$
$\Rightarrow y=x-4$
Condition of tangency for ellipse.
$16=2(1)^{2}+b$
$\Rightarrow \mathrm{b}=14$

Option (2)

Q. 7
Q. 8 (1)
Q. 9 [34]
Q. 10
Q. 11 (9)
Q. 12 (2)
Q. 13 (2)
Q. 14 (3)
Q. 15 (1)
Q. 16 (2)
Q. 17

[^0]
JEE-ADVANCED

PREVIOUS YEAR'S
Q. 1 (2)
$\because \quad \Delta_{2}=\frac{\Delta_{1}}{2}$
(by property)
$\because \quad \frac{\Delta_{1}}{\Delta_{2}}=2$
Q. 2 (C)

$\Rightarrow \quad P\left(\frac{y^{2}}{16}, \frac{y}{4}\right)$
then locus of P is $\mathrm{x}=\mathrm{y}^{2}$
Q. 3 (A, B, D)

Equation of normal is
$\mathrm{y}=\mathrm{mx}-2 \mathrm{~m}-\mathrm{m}^{3}$
$(9,6)$ satisfies it
$6=9 \mathrm{~m}-2 \mathrm{~m}-\mathrm{m}^{3}$
$m^{3}-7 m+6=0$
$\Rightarrow \mathrm{m}=1,2,-3$
$\mathrm{m}=1$
$\Rightarrow y=x-3$
$\mathrm{m}=2$
$\Rightarrow y=2 x-12$
$\mathrm{m}=-3$

$$
\Rightarrow y=-3 x+33
$$

Q. $4 \quad$ (4)

Focus is $\mathrm{S} \equiv(2,0)$. Points $\mathrm{P} \equiv(0,0)$ and $\mathrm{Q}=\left(2 \mathrm{t}^{2}\right.$, 4t)
Area of PQS $=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ 2 & 0 & 1 \\ 2 t^{2} & 4 t & 1\end{array}\right|$
$=\frac{1}{2}(8 \mathrm{t})=4 \mathrm{t}$
$\mathrm{Q}\left(2 \mathrm{t}^{2}, 4 \mathrm{t}\right)$ satisfies circle
$4 t^{4}+16 t^{2}-4 t^{2}-16 t=0$
$t^{3}+3 t-4=0$
$(t-1)\left(t^{2}+t+4\right)=0$
put $\mathrm{t}=1$ in Area of PQS.
$\Rightarrow \quad$ Area of PQS is 4
Comprehension \# 1 (Q. No. 5 to 6)
Q. 5
(B)
Q. 6 (D)

R lies on $\mathrm{y}=2 \mathrm{x}+\mathrm{a}$

$$
\Rightarrow \quad a\left(t-\frac{1}{t}\right)=-a
$$

$$
t-\frac{1}{t}=-1
$$

$$
\begin{aligned}
& \Rightarrow \quad\left(t+\frac{1}{t}\right)^{2}=1+4=5 \\
& \Rightarrow \quad P Q=a\left(t+\frac{1}{t}\right)^{2}=5 a
\end{aligned}
$$

Sol. (D)

$$
\begin{aligned}
& t-\frac{1}{t}=-1 \\
& \Rightarrow \quad t+\frac{1}{t}=\sqrt{5}
\end{aligned}
$$

$$
\tan \theta=\frac{\frac{2}{\mathrm{t}}+2 \mathrm{t}}{1-4}
$$

$$
=\frac{2\left(\frac{1}{t}+t\right)}{-3}=\frac{2 \sqrt{5}}{-3}
$$

Q. 7
(D) $\mathrm{y}=\mathrm{mx}+\frac{2}{\mathrm{~m}}$

If it is tangent to $x^{2}+y^{2}=2$

Then,
$\left|\frac{\frac{2}{m}}{\sqrt{1+m^{2}}}\right|=\sqrt{2} \Rightarrow \frac{4}{m^{2}\left(1+m^{2}\right)}=2 \Rightarrow m$
Hence equation of tangent is $y=x+2 \& y=-x-$ 2.

Chord of contact PQ is $-2 x=2 \Rightarrow x=-1$
Chord of contanct RS is y. $0=4(x-2) \Rightarrow x=2$
Hence co-ordinates of $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are $(-1,1) ;(-1$, $-1) ;(2,-4) \&(2,4)$
Area of trapezium is $=\frac{1}{2}(\mathrm{PQ}+\mathrm{RS}) \times$ Height
$=\frac{1}{2}(10) \times 3=15$

Comprehension \# 2 (Q. No. 8 \& 9)

Q. 8 (D)
Q. 9 (B)
$\mathrm{m}_{\mathrm{PK}}=\mathrm{m}_{\mathrm{QR}}$
$\frac{2 a t-0}{a t^{2}-2 a}=\frac{2 a t^{\prime}-2 a r}{a\left(t^{\prime}\right)^{2}-a r^{2}}$

$\frac{t}{t^{2}-2}=\frac{t^{\prime}-r}{\left(t^{\prime}\right)^{2}-r^{2}}$
$-\mathrm{t}^{\prime}-\mathrm{tr}^{2}=-\mathrm{t}-\mathrm{rt}^{2}-2 \mathrm{t}^{\prime}+2 \mathrm{r}, \mathrm{tt}^{\prime}=-1$
$\mathrm{t}^{\prime}-\mathrm{tr}^{2}=-\mathrm{t}+2 \mathrm{r}-\mathrm{rt}^{2}$
$-\mathrm{tr}^{2}+\mathrm{r}\left(\mathrm{t}^{2}-2\right)+\mathrm{t}^{\prime}+\mathrm{t}=0$
$\lambda=\frac{\left(2-t^{2}\right) \pm \sqrt{\left(t^{2}-2\right)^{2}+4\left(-1+t^{2}\right)}}{-2 t}$
$=\frac{\left(2-t^{2}\right) \pm \sqrt{t^{4}}}{-2 t}=\frac{2-t^{2} \pm t^{2}}{-2 t}$
$r=-\frac{1}{\mathrm{t}}$
It is not possible as the $\mathrm{R} \& \mathrm{Q}$ will be one same.
$r=-\frac{1}{t} \quad$ or $\quad r=\frac{t^{2}-1}{t}$
(D) Ans.

Sol. 9 Tangent at P is ty $=\mathrm{x}+\mathrm{at}^{2}$
Normal at S is $y+s x=2 a s+a s^{2}$

P ty $=x+a t^{2}$
$S y+s x=2 a s+\mathrm{as}^{2}$
$t y+x=2 a+\frac{a}{t^{2}}$
$t y=2 a+\frac{a}{t^{2}}-t y+a t^{2}$
$2 t^{3} y=a t^{4}+2 a t^{2}+a$
$y=\frac{a\left(t^{2}+1\right)^{2}}{2 t^{3}}$

Q. 10 (B)

$8 \mathrm{x}-\mathrm{ky}+\left(\mathrm{k}^{2}-8 \mathrm{~h}\right)=0$
$2 x+y-p=0$
Comparing coefficients of x, y and constant term, we get
$4=-\mathrm{k}=\frac{\mathrm{k}^{2}-8 \mathrm{~h}}{-\mathrm{p}}$
$\mathrm{k}=-4$
$16-8 h=-4 p$
$4-2 h=-p \quad \Rightarrow p=2 h-4$
Q. 11 (A)

For $\mathrm{a}=\sqrt{2}$, the equation of the circle is : $\mathrm{x}^{2}+\mathrm{y}^{2}=2$
Equation of tangent at $(-1,1)$ is: $-x+y=2$

Point of contact:
$\left(\frac{-\mathrm{ma}}{\sqrt{\mathrm{m}^{2}+1}}, \frac{\mathrm{a}}{\sqrt{\mathrm{m}^{2}+1}}\right) \Rightarrow\left(\frac{-\sqrt{2}}{\sqrt{2}}, \frac{\sqrt{2}}{\sqrt{2}}\right) \Rightarrow(-1,1)$
Q. 12 (B)
(A) $\mathrm{x}^{2}+\mathrm{y}^{2}=\frac{13}{4}$

Equation of tangent at $\left(\sqrt{3}, \frac{1}{2}\right)$ is : $\mathrm{x} \sqrt{3}+\frac{\mathrm{y}}{2}=\frac{13}{4}$.
\therefore option (A) incorrect.
(B) Satisfying the point $\left(\sqrt{3}, \frac{1}{2}\right)$ in the curve $\mathrm{x}^{2}+$
$a^{2} y^{2}=a^{2}$, we get $3+\frac{a^{2}}{4}=a^{2}$
$\Rightarrow \frac{3 \mathrm{a}^{2}}{4}=3 \Rightarrow \mathrm{a}^{2}=4$
\therefore the conic is : $\mathrm{x}^{2}+4 \mathrm{y}^{2}=4$

Equation of tangent at $\left(\sqrt{3}, \frac{1}{2}\right)$ is :
$\sqrt{3} x+2 y=4$

Q. 13 (A)

The equation of given tangent is: $y=x+8$
Satisfying the point $(8,16)$ in the curve $y^{2}=4 a x$ we get, $\mathrm{a}=8$.
Now comparing the given tangent with the general
tangent to the parabola, $\mathrm{y}=\mathrm{mx}+\frac{\mathrm{a}}{\mathrm{m}}$, we get $\mathrm{m}=1$.

Point of contact is $\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right) \Rightarrow(8,16)$
Q. 14 (A,B,D)

Note that P lies on directrix so triangle PQQ^{\prime} is right angled, hence QQ^{\prime} passes through focus F .
$\mathrm{PF}=4 \sqrt{2}$
Equation of QF is $\mathrm{y}=\mathrm{x}-2 \&$ PFis $\mathrm{x}+\mathrm{y}=2$
Hence, A,B,D
Q. 15 (1.50)

Let the circle be
$x^{2}+y^{2}+\lambda x=0$
For point of intersection of circle \& parabola $y^{2}=4-$ x
$\mathrm{x}^{2}+4-\mathrm{x}+\lambda \mathrm{x}=0 \Rightarrow \mathrm{x}^{2}+\mathrm{x}(\lambda-1)+4=0$
For tangency : $\Delta=0 \Rightarrow(\lambda-1)^{2}-16=0 \Rightarrow \lambda=5$ (rejected)
or $\lambda=-3$
Circle : $x^{2}+y^{2}-3 x=0$
Radius $=\frac{3}{2}=1.5$
Q. 16 (2.00)

For point of intersection :
$x^{2}-4 x+4=0 \Rightarrow x=2$ so $\alpha=2$

Ellipse

EXERCISES

Q. 1
 (2)

$\mathrm{ae}=2 \Rightarrow \mathrm{a}=\frac{2}{\mathrm{e}}=\frac{2}{1 / 2}=4$
$b^{2}=a^{2}\left(1-e^{2}\right)=16(1-1 / 4)$
Now equaiton is $\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{16\left(1-\frac{1}{4}\right)}=1$
i.e. $\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{12}=1$
Q. 2 (2)
$9 x^{2}+5\left(y^{2}-6 y+9\right)=45$
$\Rightarrow \frac{x^{2}}{5}+\frac{(y-3)^{2}}{9}=1$
$\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)=\mathrm{b}^{2}$
$\Rightarrow 9\left(1-\mathrm{e}^{2}\right)=5$
$\Rightarrow 1-\mathrm{e}^{2}=\frac{5}{9} \Rightarrow \mathrm{e}^{2}=\frac{4}{9} \Rightarrow \mathrm{e}=\frac{2}{3}$

Q. 3 (3)

$$
a=6, b=2 \sqrt{5}
$$

$$
\mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right) \frac{20}{36}=\left(1-\mathrm{e}^{2}\right) \Rightarrow \mathrm{e}=\sqrt{\frac{16}{36}}=\frac{2}{3}
$$

But directrices are $x= \pm \frac{\mathrm{a}}{\mathrm{e}}$
Hence distance between them is $2 \cdot \frac{6}{2 / 3}=18$.

Q. 4 (2)

$$
\frac{x^{2}}{(48 / 3)}+\frac{y^{2}}{(48 / 4)}=1
$$

$$
a^{2}=16, b^{2}=12 \Rightarrow e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\frac{1}{2}
$$

Distance is $2 \mathrm{ae}=2 \cdot 4 \cdot \frac{1}{2}=4$.

Q. 5 (2)

Vertex (0,7), directrix $y=12, \therefore \mathrm{~b}=7$
Also $\frac{\mathrm{b}}{\mathrm{e}}=12 \Rightarrow \mathrm{e}=\frac{7}{12}, \mathrm{a}=7 \sqrt{\frac{95}{144}}$
Hence equation of ellipse is $144 x^{2}+95 y^{2}=4655$.
Q. 6 (2)
$\frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{y}^{2}}{3}=1$. Latus rectum $=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=3$
Q. 7
(1)

The equation of the ellipse is $16 x^{2}+25 y^{2}=400$
or $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
Here $\mathrm{a}^{2}=25, \mathrm{~b}^{2}=16 \Rightarrow \mathrm{e}=\frac{3}{5}$.
Hence the foci are $(\pm 3,0)$.
Q. 8 (1)

Let point $P\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
So, $\sqrt{\left(x_{1}+2\right)^{2}+y_{1}^{2}}=\frac{2}{3}\left(x_{1}+\frac{9}{2}\right)$
$\Rightarrow\left(\mathrm{x}_{1}+2\right)^{2}+\mathrm{y}_{1}^{2}=\frac{4}{9}\left(\mathrm{x}_{1}+\frac{9}{2}\right)^{2}$
$\Rightarrow 9\left[x_{1}^{2}+y_{1}^{2}+4 x_{1}+4\right]=4\left(x_{1}^{2}+\frac{81}{4}+9 x_{1}\right)$
$\Rightarrow 5 x_{1}^{2}+9 y_{1}^{2}=45 \Rightarrow \frac{x_{1}^{2}}{9}+\frac{y_{1}^{2}}{5}=1$,
Locus of (x_{1}, y_{1}) is $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$, which is equation of an ellipse.
Q. 9 (3)

In the first case, eccentricity $\mathrm{e}=\sqrt{1-(25 / 169)}$
In the second case, $e^{\prime}=\sqrt{1-\left(b^{2} / a^{2}\right)}$
According to the given condition,
$\sqrt{1-\mathrm{b}^{2} / \mathrm{a}^{2}}=\sqrt{1-(25 / 169)}$
$\Rightarrow \mathrm{b} / \mathrm{a}=5 / 13, \quad(\because \mathrm{a}>0, \mathrm{~b}>0)$
$\Rightarrow \mathrm{a} / \mathrm{b}=13 / 5$.
Q. 10 (2)

$$
4(x-2)^{2}+9(y-3)^{2}=36
$$

Hence the centre is $(2,3)$.
Q. 11 (1)

The ellipse is $4(x-1)^{2}+9(y-2)^{2}=36$

Therefore, latus rectum $=\frac{2 b^{2}}{a}=\frac{2.4}{3}=\frac{8}{3}$

Q. 12 (2)

Foci $=(3,-3) \Rightarrow$ ae $3-2=1$
Vertex $=(4,-3) \Rightarrow a=4-2=2 \Rightarrow e=\frac{1}{2}$
$\Rightarrow \mathrm{b}=\mathrm{a} \sqrt{\left(1-\frac{1}{4}\right)}=\frac{2}{2} \sqrt{3}=\sqrt{3}$
Therefore, equation of ellipse with centre $(2,-3)$ is
$\frac{(x-2)^{2}}{4}+\frac{(y+3)^{2}}{3}=1$.
Q. 13 (2) Check $\Delta \neq 0$ and $h^{2}<\mathrm{ab}$.
Q. 14 (1)
$\frac{(x+1)^{2}}{\frac{225}{25}}+\frac{(y+2)^{2}}{\frac{225}{9}}=1$
$a=\sqrt{\frac{225}{25}}=\frac{15}{5}, b=\sqrt{\frac{225}{9}}=\frac{15}{3} \Rightarrow$
$\mathrm{e}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$
Focus $=\left(-1,-2 \pm \frac{15}{3} \cdot \frac{4}{5}\right)=(-1,-2 \pm 4)$
$=(-1,2) ;(-1,-6)$.
Q. 15 (3) $3 x^{2}-12 x+4 y^{2}-8 y=-4$
$\Rightarrow 3(\mathrm{x}-2)^{2}+4(\mathrm{y}-1)^{2}=12$
$\Rightarrow \frac{(\mathrm{x}-2)^{2}}{4}+\frac{(\mathrm{y}-1)^{2}}{3}=1 \Rightarrow \frac{\mathrm{X}^{2}}{4}+\frac{\mathrm{Y}^{2}}{3}=1$
$\therefore \mathrm{e}=\sqrt{1-\frac{3}{4}}=\frac{1}{2} . \therefore$ Foci are $\left(\mathrm{X}= \pm 2 \times \frac{1}{2}, \mathrm{Y}=0\right)$
i.e., $(\mathrm{x}-2= \pm 1, \mathrm{y}-1=0)=(3,1)$ and $(1,1)$.

Q. 16 (3)

Given equation of ellipse is ,

$$
\begin{aligned}
& 25 x^{2}+9 y^{2}-150 x-90 y+225=0 \\
& \Rightarrow 25(x-3)^{2}+9(y-5)^{2}=225 \\
& \Rightarrow \frac{(x-3)^{2}}{9}+\frac{(y-5)^{2}}{25} \\
& =1 . \text { Here } \mathrm{b}>a
\end{aligned}
$$

\therefore Eccentricity $e=\sqrt{1-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$
Q. 17 (3)

Coordinates of any point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose eccentric angle is θ are $(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)$.
The coordinates of the end points of latus recta are $\left(\mathrm{ae}, \pm \frac{\mathrm{b}^{2}}{\mathrm{a}}\right) . \therefore \mathrm{a} \cos \theta=\mathrm{ae}$ and $\mathrm{b} \sin \theta= \pm \frac{\mathrm{b}^{2}}{\mathrm{a}}$
$\Rightarrow \tan \theta= \pm \frac{\mathrm{b}}{\mathrm{ae}} \Rightarrow \theta=\tan ^{-1}\left(\pm \frac{\mathrm{b}}{\mathrm{ae}}\right)$.
Q. 18 (2)
$\because \mathrm{ae}= \pm \sqrt{5} \Rightarrow \mathrm{a}= \pm \sqrt{5}\left(\frac{3}{\sqrt{5}}\right)= \pm 3 \Rightarrow \mathrm{a}^{2}=9$
$\therefore \mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)=9\left(1-\frac{5}{9}\right)=4$
Hence, equation of ellipse
$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \Rightarrow 4 x^{2}+9 y^{2}=36$

Centre is $(3,0), a=8, b=\sqrt{64\left(1-\frac{1}{4}\right)}=4 \sqrt{3}$
Now $\mathrm{x}=3+8 \cos \theta$
$y=4 \sqrt{3} \sin \theta$
$(3+8 \cos \theta, 4 \sqrt{3} \sin \theta)$
Q. 20 (1)

Since $S_{1}>0$. Hence the point is outside the ellipse.
Q. 21 (2)
$y=3 x \pm \sqrt{\frac{3.5}{3.4}, 9+\frac{5}{3} \times \frac{4}{4}}$
$\Rightarrow \mathrm{y}=3 \mathrm{x} \pm \sqrt{\frac{155}{12}}$
Q. 22 (1)

From the given options it can the easily said Alternative :
$\frac{x^{2}}{16}+\frac{x^{2}}{9}=1$

As pair of lines of $\mathrm{T}^{2}=\mathrm{SS}_{1}$

$$
\begin{aligned}
& \left(\frac{x}{8}+\frac{y}{3}=1\right)^{2}=\left(\frac{x^{2}}{16}+\frac{y^{2}}{9}=1\right)\left(\frac{1}{4}+1-1\right) \\
& \Rightarrow \frac{x^{2}}{64}+\frac{y^{2}}{9}+1-\frac{x}{4}-\frac{2 y}{3}+\frac{x y}{12} \\
& =\frac{x^{2}}{64}+\frac{y^{2}}{36}-\frac{1}{4} \\
& \Rightarrow \frac{y^{2}}{12}-\frac{2 y}{3}-\frac{x}{4}+\frac{x y}{12}+\frac{5}{4}=0 \\
& \Rightarrow(y-3)(x+y-5)=0
\end{aligned}
$$

Q. 23 (4)

By symmetry the quadrilateral is a rhombus. So area is four times the area of the right angled triangle formed by the tangent and axes in the Ist quadrant.
Now, $\quad a e=\sqrt{a^{2}-b^{2}} \Rightarrow a e=2$
\Rightarrow Tangent (in first quadrant) at end of latus rectum $\left(2, \frac{5}{3}\right)$ is $\frac{2}{9} x+\frac{5}{3} \frac{y}{5}=1$
i.e., $\frac{x}{9 / 2}+\frac{y}{3}=1$

Area $=4 \cdot \frac{1}{2} \cdot \frac{9}{2} \cdot 3=27$ sq. unit.
Q. 24 (1)
$y=\frac{-1}{m} x+\frac{n}{m}$ is tangent to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad$ if $\frac{n}{m}= \pm \sqrt{b^{2}+a^{2}\left(\frac{1}{m}\right)^{2}}$ or $n^{2}=m^{2} b^{2}+1^{2} a^{2}$.
Q. 25 (3)

$$
\begin{aligned}
& \mathrm{SS}_{1}=\mathrm{T}^{2} \\
& \tan \theta=2 \frac{\sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}, \mathrm{a}=9, \mathrm{~b}=-4 \text { and } \mathrm{h}=-12
\end{aligned}
$$

Q. 26 (3)

The locus of point of intersection of two perpendicular tangents drawn on the ellipse is $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$, which is called 'directorcircle'.

Given ellipse is $\frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{4}=1, \quad \therefore$ Locus is $x^{2}+y^{2}=13$.
Q. 27 (3)

Change the equation $9 x^{2}+5 y^{2}-30 y=0$ in standard form $9 x^{2}+5\left(y^{2}-6 y\right)=0$
$\Rightarrow 9 x^{2}+5\left(y^{2}-6 y+9\right)=45 \Rightarrow \frac{x^{2}}{5}+\frac{(y-3)^{2}}{9}=1$
$\because \mathrm{a}^{2}<\mathrm{b}^{2}$, so axis of ellipse on y-axis.
At y axis, put $x=0$, so we can obtained vertex.
Then $0+5 y^{2}-30 y=0 \Rightarrow y=0, y=6$
Therefore, tangents of vertex $y=0, y=6$.
Q. 28 4)

For $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, equation of normal at point
$\left(x_{1}, y_{1}\right)$,
$\Rightarrow \frac{\left(x-x_{1}\right) a^{2}}{x_{1}}=\frac{\left(y-y_{1}\right) b^{2}}{y_{1}}$
$\therefore\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \equiv(0,3), \mathrm{a}^{2}=5, \mathrm{~b}^{2}=9$
$\Rightarrow \frac{(\mathrm{x}-0)}{0} 5=\frac{(\mathrm{y}-3) .9}{3}$ or $\mathrm{x}=0$ i.e., y-axis.
Q. 29
(1)

Given, equation of ellipse is
$4 x^{2}+9 y^{2}=36$
Tangent at point $(3,-2)$ is $\frac{(3) x}{9}+\frac{(-2) y}{4}=1$ or
$\frac{x}{3}-\frac{y}{2}=1$
\therefore Normal is $\frac{\mathrm{x}}{2}+\frac{\mathrm{y}}{3}=\mathrm{k}$ and it passes through point (3,-
2)
$\therefore \frac{3}{2}-\frac{2}{3}=\mathrm{k} \Rightarrow \mathrm{k}=\frac{5}{6}$
\therefore Normal is, $\frac{x}{2}+\frac{y}{3}=\frac{5}{6}$
(1)

We know that the equation of the normal at point (a $\sin \theta, \mathrm{b} \cos \theta$) on the curve $\mathrm{x}^{2}+\frac{\mathrm{y}^{2}}{4}=1$ is given by
$-\frac{\mathrm{ax}}{\sin \theta}+\frac{\text { by }}{\cos \theta}=-\mathrm{a}^{2}+\mathrm{b}^{2}$
$\Rightarrow-\frac{1 \cdot \mathrm{x}}{\sin \theta}+\frac{2 \mathrm{y}}{\cos \theta}=3$
Comparing equation (i) with $2 \mathrm{x}-\frac{8}{3} \lambda \mathrm{y}=-3$. We get,
$-\frac{1}{2 \sin \theta}=-\frac{2 \cdot 3}{8 \lambda \cos \theta}=-\frac{3}{3}$

$$
\begin{aligned}
& \Rightarrow \sin \theta \frac{1}{2} \text { and } \cos \theta=\frac{3}{4 \lambda} \\
& \Rightarrow \pm \frac{\sqrt{3}}{2}=\frac{3}{4 \lambda} \\
& \Rightarrow \lambda= \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

a $\sin \theta=2, \mathrm{~b} \operatorname{cosec} \theta=\frac{8}{3} \lambda$ or $\mathrm{ab}=\frac{16}{3} \lambda$
$\because \mathrm{a}=1, \mathrm{~b}=2 ; \therefore 2=\frac{16}{3} \lambda$ or $\lambda=3 / 8$

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1
 (1)

$P S=e P M$

$$
\sqrt{(x-1)^{2}+(y+1)^{2}}=\frac{1}{2}\left|\frac{x-y-3}{\sqrt{1^{2}+1^{2}}}\right|
$$

Squaring, we have
$7 x^{2}+7 y^{2}+7-10 x+10 y+2 x y=0$
Q. 2
$4 x^{2}+9 y^{2}+8 x+36 y+4=0$
$4\left(x^{2}+2 x+1\right)+9\left[y^{2}+4 y+4\right]=36$
$4(x+1)^{2}+9(y+2)^{2}=36$
$\frac{(x+1)^{2}}{9}+\frac{(y+2)^{2}}{4}=1$
$\Rightarrow e=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}$
Q. 3 (3)
$2 \times \frac{\mathrm{a}}{\mathrm{e}}=3 \times 2 \mathrm{ae}$
$e^{2}=\frac{1}{3} \Rightarrow e=\frac{1}{\sqrt{3}}$
Q. 4 (2)
$\frac{x^{2}}{r-2}+\frac{y^{2}}{5-r}=1$ For ellipse
$2<r<5$
Q. 5 (3)
$9 x^{2}+4 y^{2}=1$
$\frac{x}{1 / 9}+\frac{y^{2}}{1 / 4}=1 \Rightarrow$ Length of latusrectun $=\frac{2 a^{2}}{b}=\frac{4}{9}$
Q. 6 (1)
$\mathrm{e}=\frac{5}{8} ; 2 \mathrm{ae}=10 \Rightarrow 2 \mathrm{a}=\frac{10}{\mathrm{e}} \Rightarrow 2 \mathrm{a}=16$

Latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)}{\mathrm{a}}$
$=2 a\left(1-e^{2}\right)=16\left(1-\frac{26}{64}\right)=\frac{39}{4}$
Q. 7 (1)
$x=3(\cos t+\sin t) y=4(\cos t-\sin t)$
$\Rightarrow \frac{\mathrm{x}}{3}=\cos \mathrm{t}+\sin \mathrm{t} ; \frac{\mathrm{y}}{4}=\cos \mathrm{t}-\sin \mathrm{t}$
square \& add $\frac{x^{2}}{9}+\frac{y^{2}}{16}=2$
Ellipse Equation $\frac{x^{2}}{18}+\frac{y^{2}}{32}=1$
Q. 8 (3)
$\mathrm{F}_{1}(3,3) ; \mathrm{F}_{2}(-4,4)$
$2 \mathrm{ae}=\mathrm{F}_{1} \mathrm{~F}_{2}$
$2 \mathrm{ae}=\sqrt{(3+4)^{2}+(3-4)^{2}}$
$2 \mathrm{ae}=5 \sqrt{2}$
mid point of $\mathrm{P}_{1} \mathrm{P}_{2}$ will be centre of ellipse
centre $\left(-\frac{1}{2}, \frac{7}{2}\right)$
Ellipse $\frac{\left(x+\frac{1}{2}\right)^{2}}{a^{2}}+\frac{\left(y-\frac{7}{2}\right)^{2}}{b^{2}}=1$
Passing through origin $\frac{1}{4 a^{2}}+\frac{49}{4 b^{2}}=1$

From (1) and (2)

$$
e=\frac{5}{7}
$$

Q. 9 (2)

Max. area $=\frac{1}{2} \times 2 \mathrm{ae} \times \mathrm{b}=\frac{1}{2} \times 2 \times 3 \times 4=12$
Q. 10 (3)
$4\left(\mathrm{x}^{2}-4 \mathrm{x}+4\right)+9\left(\mathrm{y}^{2}-64+9\right)=36$
$4(x-2)^{2}+9(y-3)^{2}=36$
$\frac{(x-2)^{2}}{9}+\frac{(y-3)^{2}}{4}=1$.
Equation of major axis $y=3$.
Equation of minor axis $x=2$
Q. 11 (2)

Let $\mathrm{P}(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)$
$\mathrm{OP}=2$
$\Rightarrow \mathrm{OP}^{2}=4$
$\Rightarrow \mathrm{a}^{2} \cos ^{2} \theta+\mathrm{b}^{2} \sin ^{2} \theta=4$
$\Rightarrow 6 \cos ^{2} \theta+2 \sin ^{2} \theta=4$
$\cos \theta= \pm \frac{1}{\sqrt{2}} \Rightarrow \theta= \pm \frac{\pi}{4}$
Q. 12 (4)
$\frac{\mathrm{de}}{\mathrm{dt}}=0.1$
$e^{2}=1-\frac{b^{2}}{a^{2}}=1-\frac{3}{4}$
$e=0.1 t+c \Rightarrow e=1 / 2$
when $\mathrm{t}=0, \mathrm{e}=1 / 2$
$\Rightarrow \mathrm{c}=0.5$
$\mathrm{e}=0.1 \mathrm{t}+0.5$
ellipse become auxiliary circle where $\mathrm{e} \rightarrow 1$
$1=0.1 \mathrm{t}+0.5 \Rightarrow \mathrm{t}=5 \mathrm{sec}$.
Q. 13 (2)
$M_{O P}=\frac{b \sin \theta_{1}}{a \cos \theta_{1}}=\frac{b}{a} \tan \theta_{1}$

$\tan \theta_{1} \tan \theta_{2}=-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}$
$\mathrm{M}_{\mathrm{OQ}}=\frac{\mathrm{b}}{\mathrm{a}} \tan \theta_{2}$
$M_{\mathrm{OP}} \times \mathrm{M}_{\mathrm{OQ}}=\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}} \tan \theta_{1} \tan \theta_{2}$
$=\left(\frac{b^{2}}{a^{2}}\right)\left(\frac{-a^{2}}{b^{2}}\right)=-1$
So right angle at centre.
Q. 14 (2)

Let eccentric angle be θ, then equation of tangent is
$\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$
given equation is
$\frac{x}{a}+\frac{y}{b}=\sqrt{2}$
comparing (1) and (2)
$\cos \theta=\sin \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=45^{\circ}$
Q. 15 (2)
$C= \pm \sqrt{8 \times 4+4}= \pm 6$
Q. 16 (4)
$3 \mathrm{x}^{2}+4 \mathrm{y}^{2}=1$
$3 \mathrm{xx}_{1}+4 \mathrm{yy}_{1}=1$
given $3 x+4 y=-\sqrt{7}$
comparing
$\because \quad \frac{3 x_{1}}{3}=\frac{4 y_{1}}{4}=\frac{1}{-\sqrt{7}}$
$x_{1}=-\frac{1}{\sqrt{7}}$

$$
y_{1}=-\frac{1}{\sqrt{7}}
$$

Q. 17 (4)

Equation of normal
ax $\sec \phi-b y \operatorname{cosec} \phi=a^{2}-b^{2}$
...(1)
$\mathrm{x} \cos \alpha+4 \sin \alpha=\mathrm{p}$
$\frac{a \sec \varphi}{\cos \alpha}=\frac{-b y \operatorname{cosec} \varphi}{\sin \alpha}=\frac{a^{2}-b^{2}}{p}$
$\Rightarrow \cos \phi=\frac{\mathrm{ap}}{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)} \times \sec \alpha$
$\Rightarrow \sin \phi=\frac{-\mathrm{bp}}{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)} \times \operatorname{cosec} \alpha$
squaring and adding
$1=\frac{p^{2}}{\left(a^{2}-b^{2}\right)^{2}}\left[a^{2} \sec ^{2} \alpha+b^{2} \operatorname{cosec}^{2} \alpha\right]$
Q. 18 (1)
$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Let the point $\mathrm{P}(4 \cos \theta, 3 \sin \theta)$
Tangent at P
$\frac{x}{4} \cos \theta+\frac{y}{3} \sin \theta=1$

$\mathrm{A}\left(\frac{4}{\cos \theta}, 0\right) ; \mathrm{B}\left(0, \frac{3}{\sin \theta}\right)$
Let the middle point $\mathrm{M}(\mathrm{h}, \mathrm{k})$
$2 \mathrm{~h}=\frac{4}{\cos \theta} \Rightarrow \cos \theta=\frac{2}{\mathrm{~h}}$
$2 \mathrm{k}=\frac{3}{\sin \theta} \Rightarrow \sin \theta=\frac{3}{2 \mathrm{k}}$
square \& add
$\frac{4}{\mathrm{~h}^{2}}+\frac{9}{4 \mathrm{k}^{2}}=1$
$16 \mathrm{k}^{2}+9 \mathrm{~h}^{2}=4 \mathrm{~h}^{2} \mathrm{k}^{2}$
$16 y^{2}+9 x^{2}=4 x^{2} y^{2}$
Q. 19 (2)
$y=m x \pm \sqrt{\left(a^{2}+b^{2}\right) m^{2}+b^{2}}$
$y=m x \pm \sqrt{a^{2} m^{2}+\left(a^{2}+b^{2}\right)}$
Eq^{n} (1) and (2) are same
$\left(a^{2}+b^{2}\right) m^{2}+b^{2}=a^{2} m^{2}+a^{2}+b^{2}$
$\mathrm{m}^{2}=\mathrm{a}^{2} / \mathrm{b}^{2} \Rightarrow \mathrm{~m}= \pm \mathrm{a} / \mathrm{b}$
$\Rightarrow b y=a x \pm \sqrt{a^{4}+b^{4}+a^{2} b^{2}}$

Q. 20 (2)

Equation of normal $\frac{a^{2} x}{a e}-\frac{b^{2} y a}{b^{2}}=a^{2}-b^{2}$
$\frac{a x}{e}-a y=a^{2}-b^{2}$
$x-e y=a e^{3}$
Q. 21 (3)
$\frac{x}{a} \cos \phi+\frac{y}{b} \sin \phi=1$
$x^{2}+y^{2}=a^{2}$
$a x \cos \phi+a y \sin \phi=a^{2}$
$\mathrm{x} \cos \phi+\mathrm{y} \sin \phi=\mathrm{a}$
$\frac{\mathrm{x}}{\mathrm{a}} \cos \phi+\frac{\mathrm{y}}{\mathrm{a}} \sin \phi=1$
Solving (1) and (2) $\mathrm{y}=0$
Q. 22 (4)
$3 x^{2}+5 x^{2}=15$
$\frac{x^{2}}{5}+\frac{y^{2}}{3}=1$
Equation of director circle.
$x^{2}+y^{2}=5+3=8$
clearly $(2,2)$ lies on it
here $\angle \theta=\frac{\pi}{2}$
Q. 23 (2)
$a x \sec \theta-b y \operatorname{cosec} \theta=a^{2}-b^{2}$
slope $=\frac{\mathrm{a} \sec \theta}{\mathrm{b} \operatorname{cosec} \theta}=\frac{5}{3}$
$\frac{\sec \theta}{\operatorname{cosec} \theta}=1$
$\tan \theta=1 \Rightarrow \theta=\frac{\pi}{4}$
Q. 24 (3)
$\mathrm{P}(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)$
Normal at $P ; a x \sec \theta-b y \operatorname{cosec} \theta=a^{2}-b^{2}$
$R\left(\frac{a^{2}-b^{2}}{a \sec \theta}, 0\right)$
Let mid point of PR is $\mathrm{M}(\mathrm{h}, \mathrm{k})$
$2 h=\frac{a^{2}-b^{2}}{a \sec \theta}+a \cos \theta$
$\cos \theta=\frac{2 h a}{2 a^{2}-b^{2}}$
$2 \mathrm{k}=\mathrm{b} \sin \theta$
$\Rightarrow \sin \theta=\frac{2 \mathrm{k}}{\mathrm{b}}$

Square \& odd
$\frac{4 h^{2} a^{2}}{\left(2 a^{2}-b^{2}\right)^{2}}+\frac{4 k^{2}}{b^{2}}=1$
$\frac{4 a^{2} x^{2}}{\left(2 a^{2}-b^{2}\right)^{2}}+\frac{4 y^{2}}{b^{2}}=1$ Ellipse
Q. 25 (2)

Ellipse $-2 x^{2}+5 y^{2}=20$, mid point $(2,1)$
using $T=S_{1}$
$2 \mathrm{x}(2)+5(\mathrm{y} \times 1)-20=2(2)^{2}+5(1)^{2}-20$
$4 x+5 y=13$
Q. 26 (1)
$\mathrm{P}(\mathrm{a} \cos \alpha, \mathrm{b} \sin \alpha)$
$\mathrm{Q}(\mathrm{a} \cos \alpha, \mathrm{a} \sin \alpha)$
Tangent at Q point
$\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{a}$
SN $=|a e(\cos \alpha-a)|$

$S P=\sqrt{(a e-a \cos \alpha)^{2}+b^{2} \sin ^{2} \alpha}$
$=\sqrt{a^{2} e^{2}+a^{2} \cos ^{2} \alpha-2 a^{2} e \cos \alpha+b^{2}-b^{2} \cos ^{2} \alpha}$
$=\sqrt{a^{2}+\cos ^{2} \alpha\left(a^{2}-b^{2}\right)-2 a^{2} e \cos \alpha}$
$=|a e \cos \alpha-a|$
$\Rightarrow \mathrm{SP}=\mathrm{SN}$

Q. 27 (1)

Same as Previous Question.
Ans.(A) Isosceles triangle

Q. 28 (2)

$\left(\mathrm{S}_{1} \mathrm{~F}_{1}\right) \cdot\left(\mathrm{S}_{2} \mathrm{~F}_{2}\right)=\mathrm{b}^{2}=3$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (B)

Equation of ellipse correspoinding to given bridge is

$$
\frac{x^{2}}{\left(\frac{9}{2}\right)^{2}}+\frac{y^{2}}{(3)^{2}}=1
$$

$(9 / 2,0)$

Height of pillar will be y co-ordinat of point on ellipes having $\mathrm{x}=2$

$$
\therefore \frac{(2)^{2}}{(9 / 2)^{2}}+\frac{y^{2}}{9}=1 \Rightarrow y=\frac{\sqrt{65}}{3} \simeq \frac{8}{3}
$$

Q. 2 (A)

Let the fixed lines are co-ordinate axes from diagram $h=b \cos \theta$

$\Rightarrow \frac{\mathrm{h}^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{k}^{2}}{\mathrm{a}^{2}}=1 \rightarrow$ which is ellipse
Q. 3 (A)
$4 \tan \frac{B}{2} \tan \frac{C}{2}=$
$4 \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}=1$
$\Rightarrow \quad 4 \frac{(\mathrm{~s}-\mathrm{a})}{\mathrm{s}}=1$
$\Rightarrow \mathrm{s}=\frac{4 \mathrm{a}}{3}=4 \times \frac{6}{3}=8$
but $2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}=16$

$$
b+c=10
$$

Hence locas is an ellipse having center $\equiv(5,0)$
$2 \mathrm{ae}=6$ and $2 \mathrm{a}=10$

$$
\mathrm{b}^{2}=\mathrm{a}^{2}-\mathrm{a}^{2} \mathrm{e}^{2}=25-9=16
$$

\therefore Equation of ellipse

$$
\frac{(x-5)^{2}}{25}+\frac{y^{2}}{16}=1
$$

Q. 4 (A)

Given that:

$$
\begin{aligned}
& \frac{2 b^{2}}{a}=a+b \\
& 2 b^{2}=a^{2}+a b \\
& b^{2}-a^{2}=a b-b^{2} \\
& \Rightarrow(b-a)(b+a+b)=0 \\
& b=a
\end{aligned}
$$

\Rightarrow ellipse becomes a circle
Q. 5 (C)
$l x+m y+n=0$
$|\alpha-\beta|=\frac{\pi}{2}$
$\frac{x}{2} \cos \left(\frac{\alpha+\beta}{2}\right)+\frac{y}{b} \sin \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right)$.
Equation (1) and (2) are same line of chord
$\frac{\cos \left(\frac{\alpha+\beta}{2}\right)}{\mathrm{a} \ell}=\frac{\sin \left(\frac{\alpha+\beta}{2}\right)}{\mathrm{bm}}=\frac{\cos \left(\frac{\alpha-\beta}{2}\right)}{-n}=\frac{-1}{\sqrt{2} n}$
$\cos \left(\frac{\alpha+\beta}{2}\right)=-\frac{a \ell}{\sqrt{2 n}} ; \sin \left(\frac{\alpha+\beta}{2}\right)=\frac{-b m}{\sqrt{2 n}}$
Square and add $\frac{\mathrm{a}^{2} \ell^{2}}{2 \mathrm{n}^{2}}+\frac{\mathrm{b}^{2} \mathrm{~m}^{2}}{2 \mathrm{n}^{2}}=1$
$\mathrm{a}^{2} \ell^{2}+\mathrm{b}^{2} \mathrm{~m}^{2}=2 \mathrm{n}^{2}$
Q. 6 (A)
$2 y=x+4$
$y=\frac{x}{2}+2 \Rightarrow M=\frac{1}{2}$
$y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}$
$2= \pm \sqrt{4 m^{2}+b^{2}}$
$\Rightarrow \mathrm{b}^{2}=3 \Rightarrow \mathrm{~b}= \pm \sqrt{3}$
$\Rightarrow \frac{1}{m}= \pm \sqrt{4 m^{2}+3}$
$\Rightarrow \frac{1}{\mathrm{~m}^{2}}=4 \mathrm{~m}^{2}+3$
$\Rightarrow 4 \mathrm{~m}^{4}+3 \mathrm{~m}^{2}-1=0$
$\Rightarrow \mathrm{m}= \pm \frac{1}{2}$
Hence $y=-\frac{1}{2} x-2,2 y+x+y=1$
Q. 7 (A)
tangent
$\frac{\mathrm{x}}{\mathrm{a}} \cos \frac{\pi}{4}+\frac{\mathrm{y}}{\mathrm{b}} \sin \frac{\pi}{4}=1$
$P_{1}=\frac{1}{\sqrt{\frac{1}{2 a^{2}}+\frac{1}{2 b^{2}}}}=\frac{\sqrt{2} a b}{\sqrt{a^{2}+b^{2}}}$
Normal
ax $\sec \frac{\pi}{4}-b y \cos \frac{\pi}{4}=a^{2}-b^{2}$
$P_{2}=\frac{a^{2}-b^{2}}{\sqrt{2} \sqrt{\left(a^{2}+b^{2}\right)}}$
\Rightarrow Area $=P_{1} P_{2}=\frac{\left(a^{2}-b^{2}\right) a b}{a^{2}+b^{2}}$

Q. 8 (C)

ax $\sec \theta-b y \operatorname{cosec} \theta=a^{2}-b^{2}$
$\mathrm{Q} \equiv\left(\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}} \cos \theta, 0\right) \quad \mathrm{R} \equiv\left(0, \frac{-\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{~b}} \sin \theta\right)$
$\operatorname{mid} \mathrm{Pt}$. is (h, k)
$h=\frac{a^{2}-b^{2}}{2 a} \cos \theta, k=\frac{-\left(a^{2}-b^{2}\right)}{2 b} \sin \theta$
$e^{\prime}=\sqrt{\frac{1-b^{2}}{a^{2}}}=e$
Q. 9 (C)

Locus of point ' A ' will be director circle at given ellipse
hence $x^{2}+y^{2}=a^{2}+b^{2}$
Q. 10 (C)

Equation of normal at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2} e^{2}$
$T\left(x_{1} e^{2}, 0\right) \frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}=1$
$\mathrm{y}_{1}^{2}=\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}\left(\mathrm{a}^{2}-\mathrm{x}_{1}{ }^{2}\right)$
$P T=\sqrt{\left(x_{1}-x_{1} e^{2}\right)^{2}+y_{1}{ }^{2}}=\left(1-e^{2}\right)\left(a^{2}-x_{1}{ }^{2}\right)$
$=\sqrt{x_{1}^{2}\left(1-e^{2}\right)^{2}+y_{1}^{2}}$
$=\frac{b}{a} \sqrt{a^{2}-x_{1}^{2} e^{2}}$
$=\frac{\mathrm{b}}{\mathrm{a}} \sqrt{\mathrm{rr}_{1}}$
$r=a+e x_{1} ; r_{1}=a-e x_{1}$

Q. 11 (D)

Point of intersection at tangent at point having eccentric angle ' α ' \& ' β ' is
$h=\frac{\operatorname{acos}\left(\frac{\alpha+\beta}{2}\right)}{\cos \left(\frac{\alpha-\beta}{2}\right)}$
$k=\frac{b \sin \left(\frac{\alpha+\beta}{2}\right)}{\cos \left(\frac{\alpha-\beta}{2}\right)}$
$\because \alpha+\beta=$ constant (let k$)$
hence $\frac{\mathrm{h}}{\mathrm{k}}=\frac{\mathrm{a}}{\mathrm{b} \tan \mathrm{k}}$
hence locus is straight line.

Q. 12 (B)

Equation of chord of contact at $\mathrm{A}(4,3)$

$$
\frac{x}{4}+\frac{y}{3}=1
$$

Slope of line EF is $\frac{-3}{4}$
Equation of EF, (EF is tangent of ellipse)
$y=m x+\sqrt{a^{2} m^{2}+b^{2}}$
$y=\frac{-3}{4} x+\sqrt{16 \cdot \frac{9}{16}+9}$
$y=\frac{-3}{4} x+\sqrt{18}$

EF, $3 x+4 y-4 \sqrt{18}=0$
$\mathrm{d}=\left|\frac{12+12-4 \sqrt{18}}{5}\right|=\left|\frac{24-4 \sqrt{18}}{5}\right|$

Q. 13 (B)

Point P lies on the director circle
$\Rightarrow \quad P, Q$ and the centre of the ellipse are collinear.
$\Rightarrow \quad$ equation of $P Q$ is $2 x-y=0]$

Q. 12 (B)

$\mathrm{h}=\frac{2+2+3 \sqrt{2} \cos \theta}{2}$ and
$\mathrm{k}=\frac{3+3+3 \sqrt{2} \cos \theta}{2}$
$\therefore(2 \mathrm{~h}-4)^{2}+(2 \mathrm{k}-6)^{2}=18$.

Q. 13 (C)

Standard result

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (A,C,D)

By Definition
Q. 2 (A,B,C,D)
$3(x-3)^{2}+4(y+2)^{2}=C$
if $\mathrm{C}=0$ a point
if $\mathrm{C}>0$ ellipse
if $\mathrm{C}<0$ no locus.
Q. 3 (B,D)
$2 \mathrm{ae}=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}$
$a^{2} e=b^{2}$
$e=\frac{b^{2}}{a^{2}}=1-e^{2}$
$\mathrm{e}^{2}+\mathrm{e}-1=0$
$e=\frac{-1 \pm \sqrt{5}}{2}$
$(\because 0<\mathrm{e}<1)$
$e=\frac{\sqrt{5}-1}{2}$
Q. $4(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$
(A) Direction circle $x^{2}+y^{2}=a^{2}+b^{2}=9+5=14$
(B) By definition 2. $\mathrm{b}=12$
(C)
$\tan \frac{\alpha}{2} \tan \frac{\beta}{2}=\sqrt{\frac{(s-2 a e)(s-b)}{s(s-a)}} \sqrt{\frac{(s-2 a e)(s-a)}{s(s-b)}}$ $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}$
$=\frac{s-2 a e}{s}=\frac{a+a e-2 a e}{a+a e}=\frac{a-a e}{a+a e}=\frac{1-e}{1+e}$
Q. $5(A, B)$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
chord PQ :
$\frac{\mathrm{x}}{\mathrm{a}} \cos \left(\frac{\theta+\phi}{2}\right)+\frac{\mathrm{y}}{\mathrm{b}} \sin \left(\frac{\theta+\phi}{2}\right)=\cos \left(\frac{\theta-\phi}{2}\right)$
If it is passes through point $(\mathrm{d}, 0)$ on axis

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{a}} \cos \left(\frac{\theta+\phi}{2}\right)=\cos \left(\frac{\theta-\phi}{2}\right) \\
& \frac{\mathrm{d}}{\mathrm{a}}=\frac{\cos \left(\frac{\theta-\phi}{2}\right)}{\cos \left(\frac{\theta+\phi}{2}\right)}
\end{aligned}
$$

C \& D

$\frac{d-a}{d+a}=\frac{\cos \left(\frac{\theta-\phi}{2}\right)-\cos \left(\frac{\theta+\phi}{2}\right)}{\cos \left(\frac{\theta-\phi}{2}\right)+\cos \left(\frac{\theta+\phi}{2}\right)}$
$=\frac{2 \sin \frac{\theta}{2} \sin \frac{\phi}{2}}{2 \cos \frac{\theta}{2} \cos \frac{\phi}{2}}$
$\tan \frac{\theta}{2} \tan \frac{\phi}{2}=\frac{d-a}{d+a}$
$d=a e \Rightarrow \tan \frac{\theta}{2} \tan \frac{\phi}{2}=\frac{a e-a}{a e+a}=\frac{e-1}{e+1}$
$\mathrm{d}=-\mathrm{ae} \Rightarrow \tan \frac{\theta}{2} \tan \frac{\phi}{2}=\frac{-\mathrm{ae}-\mathrm{a}}{-\mathrm{ae}+\mathrm{a}}=\frac{\mathrm{e}+1}{\mathrm{e}-1}$
Q. 6 (A,C)
$2 x-\frac{8}{3} \lambda y=-3$
$\frac{8}{3} \lambda y=2 x+3$
$y=\left(\frac{3}{4 \lambda}\right) x+\left(\frac{9}{8 \lambda}\right)$
$\mathrm{m}=\frac{3}{4 \lambda}, \mathrm{c}=\frac{9}{8 \lambda}$
condition of normal
$c=\frac{-\left(a^{2}-b^{2}\right) m}{\sqrt{a^{2}+b^{2} m^{2}}}$
$\frac{9}{8 \lambda}=-\frac{[-3] \cdot m}{\sqrt{1+4 m^{2}}}$ but $\quad m=\frac{3}{4} \lambda$
solving
$\lambda= \pm \frac{\sqrt{3}}{2}$
Q. 7 (A,B,C,D)

Tangent drawn from points lying on director circle are mutually perpendicular
Equation of director circle given ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{5}=$ 1 is $x^{2}+y^{2}=9$

All points $(1,2 \sqrt{2}),(2 \sqrt{2}, 1),(2, \sqrt{5}),(\sqrt{5}, 2)$ lies on it.
Q. 8 (A,C,D)

$\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$
$\frac{y}{b} \sin \theta=1-\cos \theta \Rightarrow y=\frac{b(1-\cos \theta)}{\sin \theta}$
$A V \cdot A^{\prime} V^{\prime}=\frac{b(1-\cos \theta)}{\sin \theta} \times \frac{b(1+\cos \theta)}{\sin \theta}=b^{2}$
$\angle \mathrm{V}^{\prime} \mathrm{SV}=90^{\circ}$ so $\mathrm{V}^{\prime} \mathrm{S}^{\prime} \mathrm{SV}$ is a cyclic quadrilaterel
Q. 9 (A,C,D)
$\left(3 x^{2}+2 y^{2}-5\right)(3+8-5)=(3 x+2 \cdot y \cdot 2-5)^{2}$
$6\left(3 x^{2}+21 y^{2}-5\right)=(3 x+4 y-5)^{2}$
$\tan \theta=2 \frac{\sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}=2 \frac{\sqrt{(24)^{2}+36}}{9-4}=\frac{12}{\sqrt{5}}$
$\theta=\tan ^{-1} \frac{12}{\sqrt{5}}$
Q. 10 (C)

Equation of circle will be
$x^{2}+y^{2}=(a e)^{2}$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
\begin{aligned}
& \frac{(a e)^{2}-y^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& y=\frac{b}{e} \sqrt{1-e^{2}}=\frac{a}{e}\left(1-e^{2}\right) 2 a=17
\end{aligned}
$$

$$
P M=\frac{a}{e}\left(1-e^{2}\right)
$$

$$
\text { Area of } \Delta \mathrm{PF}_{1} \mathrm{~F}_{2}=30
$$

$$
\frac{1}{2}\left(\mathrm{~F}_{1} \mathrm{~F}_{2}\right) \times \mathrm{PM}=30 \mathrm{~F}_{1} \mathrm{~F}_{2}=2 \mathrm{ae}
$$

$$
\frac{1}{2}(2 \mathrm{ae}) \times \frac{a}{e} \sqrt{1-\mathrm{e}^{2}}=30=17 \times \frac{13}{17}
$$

$$
\mathrm{e}=\frac{13}{17} \mathrm{~F}_{1} \mathrm{~F}_{2}=13
$$

Q. 11 (A)
Eq^{n} of CF :
$\frac{x}{6}+\frac{y}{b}=1$
$\mathrm{p}=\mathrm{r}$

$\left|\frac{\frac{1}{6}+\frac{1}{b}-1}{\left\lvert\, \sqrt{\frac{1}{36}+\frac{1}{b^{2}}}\right.}\right|=1$
$\Rightarrow \mathrm{b}=5 / 2 \Rightarrow 2 \mathrm{~b}=5$
ae $=6$
$\mathrm{e}^{2}=1-\mathrm{b}^{2} / \mathrm{a}^{2}$
$\Rightarrow \mathrm{a}^{2} \mathrm{e}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2} \Rightarrow 36=\mathrm{a}^{2}-25 / 4$
$\Rightarrow \mathrm{a}^{2}=169 / 4$
$\Rightarrow \mathrm{a}=\frac{13}{2}$
$2 \mathrm{a}=13 \Rightarrow(\mathrm{AB})(\mathrm{CD})=5 \times 3=65$

Comprehension \# 1 (Q. No. 16 to 18)
Q. 16 (D)
Q. 17 (A)
Q. 18 (B)
$\left(\frac{3 x-4 y+10}{5}\right)^{2} \times \frac{25}{2}+\left(\frac{4 x+3 y-15}{5}\right)^{2} \times \frac{25}{3}=1$
$\mathrm{a}^{2}=\frac{2}{25} \Rightarrow \mathrm{a}=\frac{\sqrt{2}}{5}$ minor axis $=2 \mathrm{a}=\frac{2 \sqrt{2}}{5}$
$\mathrm{b}^{2}=\frac{3}{25} \Rightarrow \mathrm{~b}=\frac{\sqrt{3}}{5}$ major axis $=2 \mathrm{~b}=\frac{2 \sqrt{3}}{5}$
$\mathrm{e}=\sqrt{1-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}}=\sqrt{1-\frac{2}{3}}=\frac{1}{\sqrt{3}}$
centre is point of intersection of $3 x-4 y+10=0,4 x+3 y-15=0$

$$
\left(\frac{6}{5}, \frac{17}{5}\right)
$$

Comprehension \# 2 (Q. No. 19 to 21)

Q. 19 (C)
Q. 20 (B)
Q. 21 (A)

Sol. $19 \mathrm{y}=\mathrm{mx} \pm \sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}$

$$
\begin{aligned}
& k=m h \pm \sqrt{a^{2} m^{2}+b^{2}} \\
& (k-m h)^{2}=a^{2} m^{2}+b^{2} \\
& \mathrm{~m}^{2}\left(\mathrm{~h}^{2}-\mathrm{a}^{2}\right)-2 m h \mathrm{k}+\mathrm{k}^{2}-\mathrm{b}^{2}=0 \\
\because \quad & \left(\mathrm{~m}_{1}=\tan \theta_{1}, m_{2}=\tan \theta_{2}\right) \\
& m_{1} m_{2}=\frac{\mathrm{k}^{2}-\mathrm{b}^{2}}{\mathrm{~h}^{2}-\mathrm{a}^{2}}=\tan \theta_{1} \tan \theta_{2}=4 \\
\Rightarrow & \frac{\mathrm{y}^{2}-\mathrm{b}^{2}}{\mathrm{x}^{2}-\mathrm{a}^{2}}=4 \Rightarrow\left(\frac{\mathrm{y}-\mathrm{b}}{\mathrm{x}-\mathrm{a}}\right)=4\left(\frac{\mathrm{x}+\mathrm{a}}{\mathrm{y}+\mathrm{b}}\right)
\end{aligned}
$$

Sol. $20 \because \angle \mathrm{QAP}=\angle \mathrm{PBQ}=90^{\circ}$
hence a circle drawn taking ' PQ ' as diameter will pass through B,A,P,Q
\therefore center will be mid point of PQ

Sol. $21 m_{1}+m_{2}=\frac{2 h k}{h^{2}-a^{2}}$
and $\cot \theta_{1}+\cot \theta_{2}=\lambda$
$\Rightarrow \frac{1}{\tan \theta_{1}}+\frac{1}{\tan \theta_{2}}=\lambda$
$\Rightarrow \frac{\tan \theta_{1}+\tan \theta_{1}}{\tan \theta_{1} \tan \theta_{2}}=\lambda$

$$
\begin{aligned}
& \frac{2 \mathrm{hk}}{\mathrm{~h}^{2}-\mathrm{a}^{2}} \\
\Rightarrow & \frac{\mathrm{k}^{2}-\mathrm{b}^{2}}{\mathrm{~h}^{2}-\mathrm{a}^{2}} \\
\Rightarrow & 2 \mathrm{hk}=\lambda\left(\mathrm{k}^{2}-\mathrm{b}^{2}\right) \\
2 \mathrm{xy} & =\lambda\left(\mathrm{y}^{2}-\mathrm{b}^{2}\right)
\end{aligned}
$$

Comprehension \# 3 (Q. No. 22 to 23)

Q. 22 (B)
Q. 23 (D)

Sol. 22 Area $=\int_{0}^{1} \sqrt{4 x} d x$

$$
=8 / 3
$$

Sol. 23 Tangent at P
$y+x=3$
$\Rightarrow \mathrm{T}(3,0)$
Normal at P
$\mathrm{x}-\mathrm{y}=-1$
$\Rightarrow \mathrm{G}(-1,0)$
Area $=\frac{1}{2} \times 2 \times 4=4$
Q. $24(\mathrm{~A}) \rightarrow(\mathrm{r}),(\mathrm{B}) \rightarrow(\mathrm{p}),(\mathrm{C}) \rightarrow(\mathrm{s}),(\mathrm{D}) \rightarrow(\mathrm{q})$

Sol. (A) $y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}$

$$
y=-\frac{4}{3} x \pm \sqrt{18 \times \frac{16}{9}+32} \Rightarrow y=-\frac{4}{3} x \pm 8
$$

Distance between tangent
$=\frac{16}{\sqrt{1+\frac{16}{9}}}=\frac{16 \times 3}{5}=\frac{48}{5}$
(B) $y=-\frac{4}{3} x+8 A(6,0) B(0,8)$

Area of $\triangle \mathrm{AOB}=\frac{1}{2} \times 6 \times 8=24$
(C) point of contact
$\left(-\frac{a^{2} m}{\sqrt{a^{2} m^{2}+b^{2}}}, \frac{b^{2}}{\sqrt{a^{2} m^{2}+b^{2}}}\right)$
product of coordinates $=-\frac{a^{2} b^{2} m}{a^{2} m^{2}+b^{2}}=-\frac{18 \times 32 \times\left(-\frac{4}{3}\right)}{64}$ $=12$
(D) $4 x+3 y=24 \ell=\frac{4}{24} m=\frac{3}{24}$

$$
\frac{4}{24} x+\frac{3}{24} y=1 \quad \ell+m=\frac{7}{24}
$$

Q. $25(\mathbf{A}) \rightarrow(\mathbf{p}),(\mathbf{B}) \rightarrow(\mathbf{s}),(\mathbf{C}) \rightarrow(\mathbf{p}),(\mathbf{D}) \rightarrow(\mathbf{r})$

Point $\mathrm{P}=(5 / \sqrt{2}, 3 / \sqrt{2})$
equation of normal at P
$5 x-3 y=8 \sqrt{2}$.

point $\mathrm{A}=\left(\frac{8 \sqrt{2}}{5}, 0\right) \& \mathrm{~B}=\left(0, \frac{-8 \sqrt{2}}{3}\right)$.
Tangent at $P: 3 x+5 y=15 \sqrt{2} \ldots . .(i i)$
Point $T=(5 \sqrt{2}, 0)$ check the options.
Q. $26 \quad(\mathrm{~A}) \rightarrow(\mathbf{q}),(\mathbf{B}) \rightarrow(\mathbf{r}),(\mathbf{C}) \rightarrow(\mathbf{s}),(\mathbf{D}) \rightarrow(\mathbf{q})$
(A) $\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{25}=1$
$e=\sqrt{1-\frac{16}{25}}=\frac{3}{5}$
be $=\frac{3}{5} \times 5=3$
$\frac{2 \mathrm{a}^{2}}{\mathrm{~b}}=\frac{2 \times 16}{5}=\frac{32}{5}=\frac{4 \mathrm{k}}{5}$
$\mathrm{k}=8$
(B) Any pont of ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ is
$(\sqrt{6} \cos \theta, \sqrt{2} \sin \theta)$
distance from origin $\sqrt{6 \cos ^{2} \theta+\sin ^{2} \theta}=2$
$\Rightarrow \cos ^{2} \theta=\frac{1}{2} \Rightarrow \cos \theta=\frac{1}{\sqrt{2}}$
(C) $\mathrm{ae}-\frac{\mathrm{a}}{\mathrm{e}}=8$
$a\left[\frac{1}{2}-2\right]=8$
$\frac{3}{2} a=8 \Rightarrow a=\frac{16}{3}$
$\because \quad b^{2}=a^{2}\left(1-e^{2}\right)$
$\therefore \quad b^{2}=\left(\frac{16}{3}\right)^{2}\left(1-\frac{1}{4}\right)$
$\Rightarrow \mathrm{b}^{2}=\frac{64}{3}$
$\Rightarrow \mathrm{b}=\frac{8}{\sqrt{3}}$
$\Rightarrow \mathrm{k}=8$
(D) By definition of ellipse

NUMERICAL VALUE BASED

Q. 1 (13)
$\mathrm{PF}_{1}+\mathrm{PF}_{2}=17$
$\frac{1}{2} \mathrm{PF}_{1} \cdot \mathrm{PF}_{2}=30$
$\left(\mathrm{F}_{1} \mathrm{~F}_{2}\right)^{2}=\mathrm{PF}_{1}^{2}+\mathrm{PF}_{2}^{2}=289-120=169$
$\mathrm{F}_{1} \mathrm{~F}_{2}=13$
Q. 2 (85)

Center of ellipse $=(29,75 / 2)$
foot of perpendicular from focii
lie on auxillary circle
equaton of auxillary circle
$(x-29)^{2}+(y-75 / 2)=a^{2}$
$\downarrow(9,0)$ foot of perpendicular
$2 \mathrm{a}=85$.
Q. 3
(65)
ae $=6$
$b^{2}+36=(b+4)^{2}$
$36=16+8 b$
$\mathrm{b}=\frac{5}{2}$
$a^{2}=a^{2} e^{2}+b^{2}$

$=36+\frac{25}{4}=\frac{169}{4}$
$a=\frac{13}{2}$
$(2 a)(2 b)=65$
Q. 4 (24)
$\frac{x^{2}}{18}+\frac{y^{2}}{32}=1 \mathrm{a}<\mathrm{b}$
Tangent Equation slope form
$x=m y+\sqrt{a^{2} m^{2}+b^{2}}$
Slope $=\frac{1}{m}=-\frac{4}{3} \Rightarrow m=-\frac{3}{4}$
$x=-\frac{3}{4} y+\sqrt{32\left(\frac{9}{16}\right)+18}$
$4 x+3 y=24$
$\frac{x}{6}+\frac{y}{8}=1$
Intercept on axis is 6 and 8
So area of $\Delta C A B=\frac{1}{2} \times 6 \times 8=24$ sq. units.
Q. 5 (7)

Property $\ell=\mathrm{a}+\mathrm{b}=4+3=7$
Q. 6 (2)
$2 \mathrm{a}=10 \Rightarrow \mathrm{a}=5 ; 2 \mathrm{~b}=8 \Rightarrow \mathrm{~b}=4$
$e=\sqrt{1-\frac{b^{2}}{a^{2}}}=3 / 5$
Focus ($\pm \mathrm{ae}, 0$)
$\Rightarrow(\pm 3,0)$

$\mathrm{r}=5-3=2$
$\Rightarrow \mathrm{r}=2$
Q. 7 (16)
$x^{2}+9 y^{2}-4 x+6 y+4=0$
$(x-2)^{2}+\frac{(y+1 / 3)^{2}}{1 / 9}=1$
Let $\mathrm{x}-2=\cos \theta \Rightarrow \mathrm{x}=2+\cos \theta$
$y+\frac{1}{3}=\frac{1}{3} \sin \theta \Rightarrow y=-\frac{1}{3}+\frac{1}{3} \sin \theta$
$z=4 x-9 y$
$4(2+\cos \theta)-9\left(-\frac{1}{3}+\frac{1}{3} \sin \theta\right)$
$=11+4 \cos \theta-3 \sin \theta$
$\mathrm{Z}_{\text {max }}=11+5=16$
(186)

Equation of parabola,
$(x-3)^{2}=k(y+11)$
which is passing through

$(7,-4) \Rightarrow \mathrm{k}=16 / 7$
$\therefore 16 y=7(x-3)^{2}-176$
$\Rightarrow \mathrm{a}+\mathrm{h}+\mathrm{k}=186$
Q. 9 (19)

Point $\mathrm{P}=(\sqrt{2}, 1 / \sqrt{2})$
shifting the ellipse by leting the origin at $(\sqrt{2}, 1 / \sqrt{2})$
$(x+\sqrt{2})^{2}+4(y+1 / \sqrt{2})^{2}=4$
$\Rightarrow x^{2}+4 y^{2}+2 \sqrt{2} x+8 \sqrt{2} y=0$
Let the line $A B \ell x+m y=1$
Homozining (1) with (2) \& as the angle between the chords is 90° so coff. of $x^{2}+$ coff. of $y^{2}=0$
$\Rightarrow 2 \sqrt{2} \ell+4 \sqrt{2} \mathrm{~m}=-5$
using (2) \& (3) $\left(\frac{-5}{2 \sqrt{2}} x-1\right)+m(y-2 x)=0$
....(4)
which shows a family of line \& passes through a fixed point which is point of intersection of two line A.
$\Rightarrow x=-\frac{2 \sqrt{2}}{5} \quad \& y=\frac{4 \sqrt{2}}{5}$
$\operatorname{again} x=-\frac{2 \sqrt{2}}{5}-\sqrt{2}=-\frac{3 \sqrt{2}}{5} \& y=\frac{3 \sqrt{2}}{10}$
$a^{2}+b^{2}=\frac{9}{10} \Rightarrow a+b=19$
Q. 10 (17)
$\mathrm{AB}=2 \mathrm{~b} \sin \theta$
$\mathrm{AC}=\mathrm{AB} / 2$
$\Rightarrow \mathrm{b}^{2} \sin ^{2} \theta=\mathrm{a}^{2}(1-\cos \theta)^{2}$
$\Rightarrow \frac{16}{15}=\frac{2 \cos \theta}{1+\cos \theta}$

$\Rightarrow \sin \theta=\frac{15}{17} \& b=\frac{39}{5}$
so $\mathrm{AB}=\frac{180}{17}$

KVPY

PREVIOUS YEAR'S

Q. 1 (B)
ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Any tangent $\frac{\mathrm{x} \cos \theta}{4}+\frac{\mathrm{y} \sin \theta}{3}=1$
y intercept $=5 \Rightarrow \sin \theta=\frac{3}{5} ; \theta \in\left(\frac{\pi}{2}, \pi\right)$

$$
\Rightarrow \cos \theta=-\frac{4}{5}
$$

tangent $\Rightarrow-\frac{x}{5}+\frac{y}{5}=1 \Rightarrow$ slope $=1$
Q. 2 (C)
$e x^{2}+\pi y^{2}-2 e^{2} x-2 \pi^{2} y+e^{3}+\pi^{3}=\pi e$
$e\left(x^{2}-2 e x+e^{2}\right)+\pi\left(y^{2}-2 \pi y+\pi^{2}\right)=\pi e$
$\frac{(x-e)^{2}}{\pi}+\frac{(y-\pi)^{2}}{e}=1$
$\mathrm{a}^{2}=\pi \Rightarrow \mathrm{a}=\sqrt{\pi}$
$\pi>\mathrm{e}$
$\mathrm{PS}_{1}+\mathrm{PS}_{2}=2 \mathrm{a} \quad$ Major axis is $\|$ ot axis
$\mathrm{PS}_{1}+\mathrm{PS}_{2}=2 \sqrt{\pi}$
Q. 3 (A)
$4 x^{2}+9 y^{2}-8 x-36 y+15=0$
$4\left(x^{2}-2 x\right)+9\left(y^{2}-4 y\right)=-15$
$4\left(x^{2}-2 x+1\right)+9\left(y^{2}-4 y+4\right)=-15+4+36$
$4(x-1)^{2}+9(y-2)^{2}=25$
$\frac{(x-1)^{2}}{\left(\frac{5}{2}\right)^{2}}+\frac{(y-2)^{1}}{\left(\frac{5}{3}\right)^{2}}=1$.
$x^{2}-2 x+y^{2}-4 y+5$
$(x-1)^{2}+(y-2)^{2}$
\min of $\left((x-1)^{2}+(y-2)^{2}=\frac{25}{9}\right.$
\max of $\left((x-1)^{2}+(y-2)^{2}\right)=\frac{25}{4}$
$=\frac{25}{9}+\frac{25}{4}=\frac{325}{36}$

Q. 4 (D)

Let ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
and circle $x^{2}+(y+b)^{2}=r^{2} \quad\{$ let radius $=r\}$
put $x^{2}=a^{2}-\frac{a^{2} y^{2}}{b^{2}}$
in circle $a^{2}-\frac{a^{2} y^{2}}{b^{2}}+(y+b)^{2}=r^{2}$
$\Rightarrow\left(1-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right) \mathrm{y}^{2}+2 \mathrm{by}+\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{r}^{2}\right)=0$
$\mathrm{D}=0 \Rightarrow \mathrm{r}^{2}=\frac{\mathrm{a}^{4}}{\mathrm{a}^{2}-\mathrm{b}^{2}}$
$\Rightarrow \mathrm{b}=\mathrm{a} \sqrt{1-\frac{\mathrm{a}^{2}}{\mathrm{r}^{2}}}$
Area $=\Delta=\pi \mathrm{ab}=\pi \mathrm{a}^{2} \sqrt{1-\frac{\mathrm{a}^{2}}{\mathrm{r}^{2}}}$
$\frac{\mathrm{d} \Delta}{\mathrm{da}}=0 \Rightarrow \mathrm{a}^{2}=\frac{2 \mathrm{r}^{2}}{3} \Rightarrow \mathrm{a}=\sqrt{\frac{2}{3}} \mathrm{r}$
$\therefore b=a \sqrt{1-\frac{2}{3}}=\frac{a}{\sqrt{3}} \Rightarrow e=\sqrt{\frac{2}{3}}$
Q. 5 (D)

$\mathrm{A}^{\prime} \mathrm{S}^{\prime}=\mathrm{SS}{ }^{\prime}=\mathrm{SA}$
$2 \mathrm{ae}=\mathrm{a}-\mathrm{ae}$
$3 \mathrm{ae}=\mathrm{a}$
$\mathrm{e}=1 / 3$
$1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{1}{9} \Rightarrow \frac{\mathrm{~b}^{2}}{\mathrm{a}^{2}}=\frac{8}{9}$
$\Rightarrow \frac{8}{\mathrm{a}^{2}}=\frac{8}{9} \Rightarrow \mathrm{a}=3$

Q. 6 (B)

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{x \cos \theta}{3}+\frac{y \sin \theta}{2}=1 \\
\frac{x \cos \theta}{3}-\frac{y \sin \theta}{2}=1
\end{array}\right\} x=3 \sec \theta, y=0 \\
& \frac{-x \cos \theta}{3}+\frac{y \sin \theta}{2}=1 \\
& \frac{-x \cos \theta}{3}-\frac{y \sin \theta}{2}=1 \\
& x=0, y=2 \cos \theta \\
& \text { area }=4 \cdot \frac{1}{2} 3 \sin \theta \cdot 2 \cos \theta=\frac{12}{\sin \theta \cos \theta}=\frac{24}{\sin 2 \theta}
\end{aligned}
$$

\therefore min. area $=24$

Q. 7 (D)

$\mathrm{m}_{\mathrm{AB}}=\frac{\mathrm{b} \sin \theta-\mathrm{b}}{\mathrm{a} \cos \theta}=-\sqrt{3} \Rightarrow \frac{\mathrm{~b}}{\mathrm{a}}\left(\frac{\sin \theta-1}{\cos \theta}\right)=-\sqrt{3}$

$y-b=-\sqrt{3}(x-0)$
$o+b=+\sqrt{3} a e$
$b^{2}=3 a^{2} e^{2}=a^{2}\left(I-e^{2}\right)$
$\Rightarrow 4 \mathrm{e}^{2}=1 \Rightarrow \mathrm{e}=\frac{1}{2}$

Q. 8 (C)

n for the parabola;
verter A $(0,0)$
Four F: (o, k)
end point of latus rectum:
Length of $\mathrm{BC}=4 \mathrm{k}$;
 $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$
And BD $+\mathrm{DE}+\mathrm{EC}=\frac{4 \mathrm{k}}{3} \ldots \ldots$
So Major Axis of ellipse $=2 \mathrm{AF}=2 \times$
minor Axis of Ellipse $=\mathrm{DE}=\frac{4 \mathrm{k}}{3}$
Eccetricity $=C=\sqrt{1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\sqrt{\frac{1-\left(\frac{2 \mathrm{k}}{3}\right)^{2}}{\mathrm{k}^{2}}} \quad 2=\frac{\sqrt{5}}{3}$
Q. 9 (C)
$\frac{b}{-a e} \times \frac{b}{a}=-1$
$\Rightarrow \mathrm{b}^{2}=\mathrm{a}^{2} \mathrm{e}$
$\Rightarrow \mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)=\mathrm{a}^{2} \mathrm{e}$
$\Rightarrow \mathrm{e}^{2}+\mathrm{e}-1=0$
$\Rightarrow e=\frac{-1+\sqrt{5}}{2}$

JEE MAIN

PREVIOUS YEAR'S

Q. 1

Homogenise Ellipse w.r.t. line, $\frac{x}{2}+\frac{y}{1}=(x+y)^{2}$
$\therefore \quad x^{2}+2 y^{2}=2 x^{2}+2 y^{2}+4 x y$
$\Rightarrow x^{2}+4 x y=0$
$\Rightarrow \quad x=0, y=\frac{x}{4}$
angle between these line is $\frac{\pi}{2}+\tan ^{-1}\left(\frac{1}{4}\right)$

Q. 2 (3)

$E: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
$C: x^{2}+y^{2}=\frac{31}{4}$
equation of tangent to ellipse

$$
\begin{equation*}
y=m x \pm \sqrt{9 x^{2}+4} \tag{i}
\end{equation*}
$$

equation of tangent to circle

$$
\begin{equation*}
y=m x \pm \sqrt{\frac{31}{4} m^{2}+\frac{31}{4}} \tag{ii}
\end{equation*}
$$

Comparing equation (i) \& (ii)

$$
\begin{aligned}
& 9 \mathrm{~m}^{2}+4=\frac{31 \mathrm{~m}^{2}}{4}+\frac{31}{4} \\
& \Rightarrow 36 \mathrm{~m}^{2}+16=31 \mathrm{~m}^{2}+31 \\
& \Rightarrow 5 \mathrm{~m}^{2}=15 \\
& \Rightarrow \mathrm{~m}^{2}=3
\end{aligned}
$$

Q. 3
(1)
$y^{2}=3 x^{2}$
and $x^{2}+y^{2}=4 b$
Solve both we get
so $x^{2}=b$
$\frac{x^{2}}{16}+\frac{3 x^{2}}{b^{2}}=1$
$\frac{b}{16}+\frac{3}{b}=1$
$b^{2}-16 b+48=0$
$(b-12)(b-4)=0$
$b=12, b>4$

Q. 4 (3)

Equation of tangent be
$\frac{\mathrm{x} \cos \theta}{3 \sqrt{3}}+\frac{\mathrm{y} \cdot \sin \theta}{1}=1, \quad \theta \in\left(0, \frac{\pi}{2}\right)$
intercept on x-axis
$\mathrm{OA}=3 \sqrt{3} \sec \theta$
intercept on y-axis
OB $=\operatorname{cosec} \theta$
Now, sum of intercept
$=3 \sqrt{3} \sec \theta+\operatorname{cosec} \theta=f(\theta)$ let
$f^{\prime}(\theta)=3 \sqrt{3} \sec \theta \tan \theta-\operatorname{cosec} \theta \cot \theta$
$=3 \sqrt{3} \frac{\sin \theta}{\cos ^{2} \theta}-\frac{\cos \theta}{\sin ^{2} \theta}$
$=\underbrace{\frac{\cos \theta}{\sin ^{2} \theta} \cdot 3 \sqrt{3}}_{\oplus}\left[\tan ^{3} \theta-\frac{1}{3 \sqrt{3}}\right]=0 \Rightarrow \theta=\frac{\pi}{6}$

\Rightarrow at $\theta=\frac{\pi}{6}, f(\theta)$ is minimum

Q. 5	(1)
Q. 6	(3)
Q. 7	(1)
Q. 8	(3)
Q. 9	(3)
Q. 10	(1)

Q. 11 (2)
Q. 12 (3)
Q. 13 (3)
Q. 14 (2)
Q. 15 (1)
Q. 16 (1)
Q. 17 (15)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (C)

Let required ellipse is
$E_{2}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
It passes thorugh $(0,4)$
$0+\frac{16}{\mathrm{~b}^{2}}=1$

$\Rightarrow \mathrm{b}^{2}=16$
It also passes through $(\pm 3, \pm 2)$
$\frac{9}{a^{2}}+\frac{4}{b^{2}}=1$
$\frac{9}{a^{2}}+\frac{1}{4}=1$
$\frac{9}{a^{2}}=\frac{3}{4}$
$\Rightarrow \mathrm{a}^{2}=\mathrm{b}^{2}\left(1-\mathrm{e}^{2}\right)$
$\frac{12}{16}=1-\mathrm{e}^{2}$
$e^{2}=1-\frac{12}{16}=\frac{4}{16}=\frac{1}{4}$
$e=\frac{1}{2}$
Q. $2(\mathrm{~A}, \mathrm{C})$

Let equation of common tangent is $\mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}}$
$\therefore\left|\frac{0+0+\frac{1}{\mathrm{~m}}}{\sqrt{1+\mathrm{m}^{2}}}\right|=\frac{1}{\sqrt{2}} \Rightarrow \mathrm{~m}^{4}+\mathrm{m}^{2}-2=0 \Rightarrow \mathrm{~m}= \pm$
Equation of common tangents are $y=x+1$ and $y=-$ $\mathrm{x}-1$ point Q is $(-1,0)$
\therefore Equation of ellipse is $\frac{\mathrm{x}^{2}}{1}+\frac{\mathrm{y}^{2}}{1 / 2}=1$
(A) $\mathrm{e}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}$ and LR $\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=1$

Area 2.
$\int_{1 / \sqrt{2}}^{1} \frac{1}{\sqrt{2}} \cdot \sqrt{1-x^{2}} d x=\sqrt{2}\left[\frac{x}{2} \sqrt{1-x^{2}} \frac{1}{2} \sin ^{-1} x\right]_{1 / \sqrt{2}}^{1}$
$=\sqrt{2}\left[\frac{\pi}{4}-\left(\frac{1}{4}+\frac{\pi}{8}\right)\right]=\sqrt{2}\left(\frac{\pi}{8}-\frac{1}{4}\right)=\frac{\pi-2}{4 \sqrt{2}}$
correct answer are (A) and (D)

Q. 3 (A)

$y^{2}=4 \lambda x, P(\lambda, 2 \lambda)$
Slope of the tangent to the parabola at point P
$\frac{d y}{d x}=\frac{4 \lambda}{2 y}=\frac{4 \lambda}{2 x 2 \lambda}=1$
Slope of the tangent to the ellipse at P
$\frac{2 \mathrm{x}}{\mathrm{a}^{2}}+\frac{2 \mathrm{yy}^{\prime}}{\mathrm{b}^{2}}=0$
As tangents are perpendicular $y^{\prime}=-1$

$$
\begin{aligned}
& \Rightarrow \frac{2 \lambda}{\mathrm{a}^{2}}-\frac{4 \lambda}{\mathrm{~b}^{2}}=0 \Rightarrow \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}=\frac{1}{2} \\
& \Rightarrow \mathrm{e}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Q. 4 (4)

A and B be midpoints of segment $P Q$ and $P Q^{\prime}$ respectively
$\mathrm{AB}=$ distance between $\mathrm{M}(\mathrm{P}, \mathrm{Q})$ and $\mathrm{M}\left(\mathrm{P}, \mathrm{Q}^{\prime}\right)=\frac{1}{2} \cdot \mathrm{QQ}^{\prime}$
Since, $\mathrm{Q}, \mathrm{Q}^{\prime}$ must be on E , so, maximum of $\mathrm{QQ}^{\prime}=8$
\therefore Maximum of $\mathrm{AB}=\frac{8}{2}=4$

Hyperbola

EXERCISES-I

Q. 1
Q. 2
$e=\sqrt{1+\frac{b^{2}}{a^{2}}} \Rightarrow e^{2}=\frac{a^{2}+b^{2}}{a^{2}}$ $e_{1}=\sqrt{1+\frac{a^{2}}{b^{2}}} \Rightarrow e_{1}^{2}=\frac{b^{2}+a^{2}}{b^{2}} \Rightarrow \frac{1}{e_{1}^{2}}+\frac{1}{e^{2}}=1$.
(1)

Conjugate axis is 5 and distance between foci $=13$ $\Rightarrow 2 \mathrm{~b}=5$ and $2 \mathrm{ae}=13$.
Now, also we know for hyperbola
$\mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right) \Rightarrow \frac{25}{4}=\frac{(13)^{2}}{4 \mathrm{e}^{2}}\left(\mathrm{e}^{2}-1\right)$
$\Rightarrow \frac{25}{4}=\frac{169}{4}-\frac{169}{4 \mathrm{e}^{2}}$ or $\mathrm{e}^{2}=\frac{169}{144} \Rightarrow \mathrm{e}=\frac{13}{12}$
or $\mathrm{a}=6, \mathrm{~b}=\frac{5}{2}$ or hyperbola is $\frac{\mathrm{x}^{2}}{36}-\frac{\mathrm{y}^{2}}{25 / 4}=1$
$\Rightarrow 25 \mathrm{x}^{2}-144 \mathrm{y}^{2}=900$.
Vertices $(\pm 4,0) \equiv(\pm a, 0) \Rightarrow \mathrm{a}=4$
Foci $(\pm 6,0) \equiv(\pm \mathrm{ae}, 0) \Rightarrow \mathrm{e}=\frac{6}{4}=\frac{3}{2}$
$(4 x+8)^{2}-(y-2)^{2}=-44+64-4$
$\Rightarrow \frac{16(\mathrm{x}+2)^{2}}{16}-\frac{(\mathrm{y}-2)^{2}}{16}=1$
Transverse and conjugate axes are $\mathrm{y}=2, \mathrm{x}=-2$
Foci $(0, \pm 4) \equiv(0, \pm$ be $) \Rightarrow$ be $=4$
Vertices $(0, \pm 2) \equiv(0, \pm b) \Rightarrow b=2 \Rightarrow a=2 \sqrt{3}$
Hence equation is $\frac{-x^{2}}{(2 \sqrt{3})^{2}}+\frac{y^{2}}{(2)^{2}}=1$ or $\frac{y^{2}}{4}-\frac{x^{2}}{12}=1$.

(1)

Directrix of hyperbola $x=\frac{a}{e}$,
where $e=\sqrt{\frac{b^{2}+a^{2}}{a^{2}}}=\frac{\sqrt{b^{2}+a^{2}}}{a}$

Directrix is, $x=\frac{a^{2}}{\sqrt{a^{2}+b^{2}}}=\frac{9}{\sqrt{9+4}} \Rightarrow x=\frac{9}{13}$

$$
\begin{equation*}
(x-2)^{2}+(y-1)^{2}=4\left[\frac{(x+2 y-1)^{2}}{5}\right] \tag{1}
\end{equation*}
$$

$$
\Rightarrow 5\left[x^{2}+y^{2}-4 x-2 y+5\right]
$$

$$
=4\left[x^{2}+4 y^{2}+1+4 x y-2 x-4 y\right]
$$

$$
\Rightarrow x^{2}-11 y^{2}-16 x y-12 x+6 y+21=0
$$

Q. 8 (1)

The equation is $(x-0)^{2}+(y-0)^{2}=a^{2}$.
Q. 9 (3)

If $y=2 x+\lambda$ is tangent to given hyperabola, then
$\lambda= \pm \sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}}= \pm \sqrt{(100)(4)-144}= \pm \sqrt{256}= \pm 16$
Q. 10 (1)

Suppose point of contact be (h, k), then tangent is $\mathrm{hx}-4 \mathrm{ky}-5=0 \equiv 3 \mathrm{x}-4 \mathrm{y}-5=0$ or $\mathrm{h}=3, \mathrm{k}=1$
Hence the point of contact is $(3,1)$.
Q. 11 (1)

Tangent to $\frac{x^{2}}{1}-\frac{y^{2}}{3}=1$ and perpendicular to $x+3 y-2=0$ is given by

$$
\begin{equation*}
y=3 x \pm \sqrt{9-3}=3 x \pm \sqrt{6} . \tag{2}
\end{equation*}
$$

$\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p} \Rightarrow \mathrm{y}=-\cot \alpha \cdot \mathrm{x}+\mathrm{p} \operatorname{cosec} \alpha$
It is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Therefore, $\mathrm{p}^{2} \operatorname{cosec}^{2} \alpha=\mathrm{a}^{2} \cot ^{2} \alpha-\mathrm{b}^{2}$
$\Rightarrow \mathrm{a}^{2} \cos ^{2} \alpha-\mathrm{b}^{2} \sin ^{2} \alpha=\mathrm{p}^{2}$
Q. 13 (3)

Equation of normal to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $(a \sec \theta, b \tan \theta)$ is $\frac{a^{2} x}{a \sec \theta}+\frac{b^{2} y}{b \tan \theta}=a^{2}+b^{2}$
Q. 14 (1)

Any normal to the hyperbola is
$\frac{a x}{\sec \theta}+\frac{\text { by }}{\tan \theta}=a^{2}+b^{2}$
But it is given by $\mathrm{lx}+\mathrm{my}-\mathrm{n}=0$
Comparing (i) and (ii), we get
$\sec \theta=\frac{a}{1}\left(\frac{-n}{a^{2}+b^{2}}\right)$ and $\tan \theta=\frac{b}{m}\left(\frac{-n}{a^{2}+b^{2}}\right)$
Hence eliminating θ, we get
$\frac{\mathrm{a}^{2}}{\mathrm{l}^{2}}-\frac{\mathrm{b}^{2}}{\mathrm{~m}^{2}}=\frac{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}}{\mathrm{n}^{2}}$
Q. 15 (4)

Applying the formula, the required normal is
$\frac{16 x}{8}+\frac{9 y}{3 \sqrt{3}}=16+9$ i.e., $2 x+\sqrt{3} y=25$
Trick: This is the only equation among the given options at which the point $(8,3 \sqrt{3})$ is located.
Q. 16 (2)

We know that the equation of the normal of the conic $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ at \quad point $\quad(a \sec \theta, b \tan \theta) \quad$ is
$a x \sec \theta+b y \cot \theta=a^{2}+b^{2}$
or $y=\frac{-a}{b} \sin \theta x+\frac{a^{2}+b^{2}}{b \cot \theta}$ Comparing above equation with equation $\mathrm{y}=\mathrm{mx}+\frac{25 \sqrt{3}}{3}$ and taking $a=4, b=3$.
we get, $\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{~b} \cot \theta}=\frac{25 \sqrt{3}}{3} \Rightarrow \tan \theta=\sqrt{3} \Rightarrow \theta=60^{\circ}$
and $m=-\frac{a}{b} \sin \theta=\frac{-4}{3} \sin 60^{\circ}=\frac{-4}{3} \times \frac{\sqrt{3}}{2}=\frac{-2}{\sqrt{3}}$.

Q. 17 (2)

The equation of chord of contact at point (h, k) is

$$
\mathrm{xh}-\mathrm{yk}=9
$$

Comparing with $\mathrm{x}=9$, we have $\mathrm{h}=1, \mathrm{k}=0$
Hence equation of pair of tangent at point $(1,0)$ is
$\mathrm{SS}_{1}=\mathrm{T}^{2}$
$\Rightarrow\left(x^{2}-y^{2}-9\right)\left(1^{2}-0^{2}-9\right)=(x-9)^{2}$
$\Rightarrow-8 \mathrm{x}^{2}+8 \mathrm{y}^{2}+72=\mathrm{x}^{2}-18 \mathrm{x}+81$
$\Rightarrow 9 x^{2}-8 y^{2}-18 x+9=0$
Q. 18 (1)

Tangent to $y^{2}=8 x \Rightarrow y=m x+\frac{2}{m}$
Tangent to $\frac{x^{2}}{1}-\frac{y^{2}}{3}=1 \Rightarrow y=m x \pm \sqrt{m^{2}-3}$
On comparing, we get
$m= \pm 2$ or tangent as $2 x \pm y+1=0$.
Q. 19 (2)

According to question, $\mathrm{S} \equiv 25 \mathrm{x}^{2}-16 \mathrm{y}^{2}-400=0$
Equation of required chord is $\mathrm{S}_{1}=\mathrm{T}$
Here, $\mathrm{S}_{1}=25(5)^{2}-16(3)^{2}-400$
$=625-144-400=81$
and $\mathrm{T} \equiv 25 \mathrm{xx}_{1}-16 \mathrm{yy}_{1}-400$, where $\mathrm{x}_{1}=5, \mathrm{y}_{1}=3$
$=25(\mathrm{x})(5)-16(\mathrm{y})(3)-400=125 \mathrm{x}-48 \mathrm{y}-400$
So from (i), required chord is

$$
125 x-48 y-400=81 \text { or } 125 x-48 y=481 .
$$

Given, equation of hyperbola $2 x^{2}+5 x y+2 y^{2}+4 x+5 y=0$ and equation of asymptotes

$$
2 x^{2}+5 x y+2 y^{2}+4 x+5 y+\lambda=0
$$

.....(i), which is the equation of a pair of straight lines. We know that the standard equation of a pair of straight lines

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 .
$$

Comparing equation (i) with standard equation, we get $\mathrm{a}=2, \mathrm{~b}=2, \mathrm{~h}=\frac{5}{2}, \mathrm{~g}=2, \mathrm{f}=\frac{5}{2}$ and $\mathrm{c}=\lambda$.
We also know that the condition for a pair of straight lines is $\mathrm{abc}+2 \mathrm{fgh}-\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0$.
Therefore $4 \lambda+25-\frac{25}{2}-8-\frac{25}{4} \lambda=0$
or $-\frac{9 \lambda}{4}+\frac{9}{2}=0$ or $\lambda=2$. Substituting value of λ in equation (i), we get

$$
\begin{equation*}
2 x^{2}+5 x y+2 y^{2}+4 x+5 y+2=0 \tag{2}
\end{equation*}
$$

$x y=c^{2}$ as $c^{2}=\frac{a^{2}}{2}$. Here, co-ordinates of focus are $\left(\operatorname{aecos} 45^{\circ}, \operatorname{ae} \sin 45^{\circ}\right) \equiv(\mathrm{c} \sqrt{2}, \mathrm{c} \sqrt{2})$,
$\{\because e=\sqrt{2}, a=c \sqrt{2}\}$
Similarly other focus is $(-\mathrm{c} \sqrt{2},-\mathrm{c} \sqrt{2})$
Note : Students should remember this question as a fact.
Q. 22 (4)

Since it is a rectangular hyperbola, therefore eccentricity $e=\sqrt{2}$.

Q. 23 (3)

Multiplying both, we get $x^{2}-y^{2}=a^{2}$. This is equation of rectangular hyperbola as $a=b$.
Q. 24 (2)

Tangent at $(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)$ is,
$\frac{\mathrm{x}}{(\mathrm{a} / \sec \theta)}-\frac{\mathrm{y}}{(\mathrm{b} / \tan \theta)}=1$ or
$\frac{\mathrm{a}}{\sec \theta}=1, \frac{\mathrm{~b}}{\tan \theta}=1$
$\Rightarrow \mathrm{a}=\sec \theta \quad \mathrm{b}=\tan \theta$ or (a, b) lies on $\mathrm{x}^{2}-\mathrm{y}^{2}=1$
Q. 25 (4)

Since eccentricity of rectangular hyperbola is $\sqrt{2}$.
Q. 26 (3)

Since the general equation of second degree represents a rectangular hyperbola, if $\Delta \neq 0, h^{2}>\mathrm{ab}$ and coefficient of $x^{2}+$ coefficient of $y^{2}=0$. Therefore the given equation represents a rectangular hyperbola, if $\lambda+5=0$ i.e., $\lambda=-5$
Q. 27 (4)
\because Distance between directrices $=\frac{2 \mathrm{a}}{\mathrm{e}}$.
\because Eccentricity of rectangular hyperbola $=\sqrt{2}$
\therefore Distance between directrics $=\frac{2 \mathrm{a}}{\sqrt{2}}$.
Given that, $\frac{2 \mathrm{a}}{\sqrt{2}}=10 \Rightarrow 2 \mathrm{a}=10 \sqrt{2}$
Now, distance between foci
$=2 \mathrm{ae}=(10 \sqrt{2})(\sqrt{2})=20$.
Q. 28 (2)

Eccentricity of rectangular hyperbola is $\sqrt{2}$.
Q. 29 (3) It is obvious.
Q. 30 (2) Let equation of circle is $x^{2}+y^{2}=a^{2}$

Parametric form of $x y=c^{2}$ are $x=c t, y=\frac{c}{t}$

$$
\Rightarrow \mathrm{c}^{2} \mathrm{t}^{2}+\frac{\mathrm{c}^{2}}{\mathrm{t}^{2}}=\mathrm{a}^{2} \Rightarrow \mathrm{c}^{2} \mathrm{t}^{4}-\mathrm{a}^{2} \mathrm{t}^{2}+\mathrm{c}^{2}=0
$$

Product of roots will be, $t_{1} t_{2} t_{3} t_{4}=\frac{c^{2}}{c^{2}}=1$

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1 (2)

Given hyperbola
$(x-2)^{2}-(y-2)^{2}=-16$
Rectangular hyperbola
$\therefore \quad \mathrm{e}=\sqrt{2}$.
Q. 2 (3)

If $e_{1} \& e_{2}$ are eccentircities of two conjugate hyperbolas
then $\frac{1}{e_{1}^{2}}+\frac{1}{e_{2}^{2}}=1$
$\therefore \quad \mathrm{e}_{1}=\sec \alpha \& \mathrm{e}_{2}=\operatorname{cosec} \alpha$
Q. 3 (3)
$\frac{2 b^{2}}{a}=8$
and $2 \mathrm{~b}=\frac{2 \mathrm{ae}}{2}$
and $\mathrm{e}^{2}=1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}$
by (1), (2), (3) $\mathrm{e}=\frac{2}{\sqrt{3}}$ Ans.
Q. 4 (4)

$$
\begin{align*}
& \sqrt{3} \mathrm{x}-\mathrm{y}-4 \sqrt{3} \mathrm{k}=0 \tag{1}\\
& \sqrt{3} \mathrm{kx}+\mathrm{ky}-4 \sqrt{3}=0 \tag{2}
\end{align*}
$$

Solve (1) and (2)
$x=2 \frac{\left(1+k^{2}\right)}{k}$ and $y=\frac{2 \sqrt{3}\left(1-k^{2}\right)}{k}$
$\frac{x^{2}}{4}-\frac{y^{2}}{12}=4 \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{48}=1$ Hyperbola
Q. 5
$\frac{2 b^{2}}{a}=8 ; e=\frac{3}{\sqrt{5}} \quad \Rightarrow b^{2}=4 a ; e^{2}=\frac{9}{5}$
$1+\frac{b^{2}}{a^{2}}=\frac{9}{5} \quad \Rightarrow \frac{b^{2}}{a^{2}}=\frac{4}{5}$
$\Rightarrow \mathrm{a}=5 \Rightarrow \mathrm{~b}^{2}=20$
Hyp. $\frac{x^{2}}{25}-\frac{y^{2}}{20}=1 \Rightarrow 4 x^{2}-5 y^{2}=100$
Q. 6 (3)
$\mathrm{C}(0,0) \quad \mathrm{A}_{1}(4,0)$
$\mathrm{F}_{1}(6,0)$
$\mathrm{CA}_{1}=4$
$\mathrm{CF}_{1}=6$
$\Rightarrow \mathrm{a}=4 \quad \mathrm{ae}=6$
$a^{2} e^{2}=36 \quad \Rightarrow a^{2}\left(1+\frac{b^{2}}{a^{2}}\right)=36$
$\Rightarrow \mathrm{b}^{2}=36-16 \quad \Rightarrow \mathrm{~b}^{2}=20$

Hyp. $\frac{x^{2}}{16}-\frac{y^{2}}{20}=1$ or $5 x^{2}-4 y^{2}=80$
Q. 7 (1)
$\mathrm{F}_{1}(6,5)$
$\mathrm{F}_{2}(-4,5)$
$e=\frac{5}{4}$
$\mathrm{F}_{1} \mathrm{~F}_{2}=2 \mathrm{ae}$
Centre of hyp. is the mid
point

$$
\text { of } \mathrm{F}_{1} \mathrm{~F}_{2}=(1,5)
$$

$2 \mathrm{ae}=10$
$\Rightarrow \mathrm{ae}=5 \Rightarrow \mathrm{a}^{2} \mathrm{e}^{2}=25 \Rightarrow \mathrm{a}^{2}\left(\frac{25}{16}\right)=25$
$\Rightarrow \mathrm{a}^{2}=16 \Rightarrow \mathrm{~b}^{2}=9$
Hyp. $\frac{(x-1)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
Q. 8 (2)

Centre of hyp. will be
mid point of $A_{1} \& A_{2}=\left(\frac{10+0}{2}, 0\right)=(5,0) \&$ check options
Q. 9 (3)
$2 \mathrm{a}=7 \Rightarrow \mathrm{a}=\frac{7}{2}$
Let the Equation of hyp.
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
passes through $(5,-2)$

$$
\begin{aligned}
& \frac{25}{a^{2}}-\frac{4}{b^{2}}=1 \\
& \frac{25}{a^{2}}-1=\frac{4}{b^{2}} \\
& b^{2}=\frac{4 a^{2}}{25-a^{2}}=\frac{4 \times \frac{49}{4}}{25-\frac{49}{4}}=\frac{196}{51}
\end{aligned}
$$

Equation $\frac{4 x^{2}}{49}-\frac{51 y^{2}}{196}=1$

Q. 10 (2)

$x^{2}-y^{2} \sec ^{2} \alpha=5$
$\frac{x^{2}}{5}-\frac{y^{2}}{5 \cos ^{2} \alpha}=1 \rightarrow e_{1}$
$e_{1}=1+\frac{5 \cos ^{2} \alpha}{5}=1+\cos ^{2} \alpha$
$x^{2} \sec ^{2} \alpha+y^{2}=25$
$\frac{x^{2}}{25 \cos ^{2} \alpha}+\frac{y^{2}}{25}=1 \rightarrow e_{2}$
$e_{2}=1-\frac{25 \cos ^{2} \alpha}{25}=1-\cos ^{2} \alpha$
$e_{1}=\sqrt{3} e_{2}$
$\mathrm{e}_{1}{ }^{2}=3 \mathrm{e}_{2}{ }^{2}$
$1+\cos ^{2} \alpha=3-3 \cos ^{2} \alpha$
$4 \cos ^{2} \alpha=2$
$\cos \alpha=\frac{1}{\sqrt{2}} \Rightarrow \alpha=\frac{\pi}{4}$
Q. 11 (1)

If they intersect at right angles then circle will pass through its focus
Circle will be

$x^{2}+y^{2}=\left(\mathrm{OF}_{1}\right)^{2}$
$x^{2}+y^{2}=(\sqrt{5})^{2}$
$x^{2}+y^{2}=(\sqrt{5})^{2} ; F_{1}(a e, 0) e=\sqrt{5}$
$x^{2}+y^{2}=5 ; F_{1}(\sqrt{5}, 0)$
Q. 12 (1)
$\sqrt{2}^{2} \sec ^{2} \theta+\sqrt{2}^{2} \tan ^{2} \theta=6$
$\Rightarrow 1+2 \tan ^{2} \theta=3$
$\therefore \theta=\pi / 4$ for first quadrant
Q. 13 (4)
$\theta=30^{\circ}$
$\frac{b \tan \theta}{a \sec \theta}=\tan 30^{\circ}$
$\frac{\mathrm{b}}{\mathrm{a}} \sin \theta=\frac{1}{\sqrt{3}}$

(a sec $\theta,-\mathrm{b} \tan \theta)$
$\frac{b}{a}=\frac{1}{\sqrt{3} \sin \theta}$
$e^{2}=1+\frac{b^{2}}{a^{2}}=1+\frac{1}{3 \sin ^{2} \theta}$
$\mathrm{e}^{2}>1+\frac{1}{3}$
e $>\frac{2}{\sqrt{3}}$

Q. 14 (1)

$4 x^{2}-9 y^{2}=36$
$\Rightarrow \frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$
$5 \mathrm{x}+2 \mathrm{y}-10=0$
$m=\frac{-5}{2}$
$\mathrm{m}^{\prime}=\frac{2}{5}$
Equation of tangent $y=m^{\prime} x \pm \sqrt{a^{2}\left(m^{\prime}\right)^{2}-b^{2}}$
$y=\frac{2}{5} x \pm \sqrt{9 \times \frac{4}{25}-16}$
$y=\frac{2 x}{5} \pm \sqrt{- \text { ve }}$ so not possible

Q. 15 (4)

$(1,2 \sqrt{2})$ lies on director circle
of $\frac{\mathrm{x}^{2}}{25}-\frac{\mathrm{y}^{2}}{16}=1$ i.e. $\mathrm{x}^{2}+\mathrm{y}^{2}=9$
\therefore Required angle $\pi / 2$
Q. 16 (3)
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Tangent
$y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$

$$
\begin{equation*}
\frac{x^{2}}{\left(-b^{2}\right)}-\frac{y^{2}}{\left(-a^{2}\right)}=1 \tag{1}
\end{equation*}
$$

$y=m x \pm \sqrt{\left(-b^{2}\right) m^{2}+a^{2}}$
(1) and (2) are same
$\frac{1}{1}=\frac{1}{1}=\frac{\sqrt{a^{2} m^{2}-b^{2}}}{\sqrt{a^{2}-b^{2} m^{2}}}$
$a^{2}-b^{2} m^{2}=a^{2} m^{2}-b^{2}$
$\mathrm{m}^{2}=1 \Rightarrow \mathrm{~m}= \pm 1$
$y= \pm x \pm \sqrt{a^{2}-b^{2}}$
Q. 17 (4)

Locus of the feet of the \perp^{n} drawn from any focus of the the hyp. upon any tangent is its auxilary circle
Hyp. $\frac{x^{2}}{\left(\frac{1}{16}\right)}-\frac{y^{2}}{\left(\frac{1}{9}\right)}=1$
Auxiliary circle $x^{2}+y^{2}=\frac{1}{16}$
Q. 18 (1)

Tangent to the parabola
$y=m x+\frac{2}{m}$
T angent to the Hyp.
$y=m x \pm \sqrt{m^{2}-3}$
(1) and (2) are same $1=\frac{2}{m \sqrt{m^{2}-3}}$
$\mathrm{m}^{2}-3 \mathrm{~m}^{2}-4=0 \Rightarrow \mathrm{~m}^{2}=4 \Rightarrow \mathrm{~m}= \pm 2$
From (1) $2 x \pm y+1=0$

Q. 19 (3)

by $T=S_{1}$ we get $5 x+3 y=16$
Q. 20 (1)
by $\mathrm{T}=\mathrm{S}_{1}$
$3 \mathrm{xh}-2 \mathrm{yk}+2(\mathrm{x}+\mathrm{h})-3(\mathrm{y}+\mathrm{k})$
$=3 \mathrm{~h}^{2}-2 \mathrm{k}^{2}+4 \mathrm{~h}-6 \mathrm{k}$
$\Rightarrow \mathrm{x}(3 \mathrm{~h}+2)+\mathrm{y}(-2 \mathrm{k}-3)=3 \mathrm{~h}^{2}-2 \mathrm{k}^{2}+2 \mathrm{~h}-3 \mathrm{k}$
If is parallel to $y=2 x$
$\therefore \frac{(3 \mathrm{~h}+2)}{(2 \mathrm{k}+3)}=2 \Rightarrow 3 \mathrm{x}-4 \mathrm{y}=4$ Ans.
Q. 21 (2)
$\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
Let the point R is (h, k)
So the equation of chord of contact.

$\frac{h x}{16}-\frac{k y}{9}=1$

It passes through $(2,1) \quad$ so $\frac{2 h}{16}-\frac{k}{9}=1$
$\frac{h}{8}-\frac{k}{9}=1$
so locus of R is $9 x-8 y=72$

Q. 22 (2)

Slope of the chord $=\frac{25}{16} \times \frac{x_{1}}{y_{1}}$

$$
=\frac{25}{16} \times \frac{6}{2}=\frac{75}{16}
$$

Equation of chord passing through $(6,2)$
$y-2=\frac{75}{16}(x-6)$
$16 y-32=75 x-450$
$75 x-16 y=418$

Q. 23 (1)

Let pair of asymptotes be
$\mathrm{xy}-\mathrm{xh}-\mathrm{yk}+\lambda=0$
...(1)
where λ : constant
\therefore for (1) represents pair of straight line $\lambda=\mathrm{hk}$
\therefore Asymptotes $\mathrm{x}-\mathrm{k}=0, \mathrm{y}-\mathrm{h}=0$
Q. 24 (1)
$2 x^{2}+5 x y+2 y^{2}+4 x+5 y=0$
so equation of asymptotes is
$2 x^{2}+5 x y+2 y^{2}+4 x+5 y+c=0$
it represents a pair of st. line
if $\left|\begin{array}{ccc}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|=0\left|\begin{array}{ccc}2 & \frac{5}{2} & 2 \\ \frac{5}{2} & 2 & \frac{5}{2} \\ 2 & \frac{5}{2} & c\end{array}\right|=0$
after solving the determinant $\mathrm{c}=2$
combined equation of asymptotes.
$2 x^{2}+5 x y+2 y^{2}+4 x+5 y+2=0$
Q. 25 (1)

Hyp. $x y-3 x-2 y=0$
$f(x, y)=x y-3 x-2 y$
$\frac{\delta f}{\delta x}=0 \Rightarrow y=3$
$\frac{\delta f}{\delta y}=0 \Rightarrow x=2$
Centre (2, 3)
Asy. $\mathrm{xy}-3 \mathrm{x}-2 \mathrm{y}+\mathrm{C}=0$
will pass through $(2,3)$

$$
C=6
$$

$x y-3 x-2 y+6=0$
$(y-3)(x-2)=0$
$x-2=0, y-3=0$

Q. 26

(4)

Let the circle on which
P, Q, R, S lie be
$x^{2}+y^{2}+2 g x+2 f y+C_{1}=0$
How let $\left(\mathrm{ct}, \frac{\mathrm{c}}{\mathrm{t}}\right)$ lie on it
$\Rightarrow \mathrm{c}^{2} \mathrm{t}^{4}+2 \mathrm{gct}^{3}+\mathrm{C}_{1} \mathrm{t}^{2}+2 \mathrm{fct}+\mathrm{c}^{2}=0$
where $t_{1}, t_{2}, t_{3} t_{4}$ represents the parameters for P, Q,
R, S
$\therefore \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4}=1$
also since orthocentre of $\triangle \mathrm{PQR}$ be
$\left(\frac{-\mathrm{c}}{\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}},-\mathrm{ct}_{1} \mathrm{t}_{2} \mathrm{t}_{3}\right) \Rightarrow\left(-\mathrm{x}_{4},-\mathrm{y}_{4}\right)$
Q. 27

Let $A\left(\mathrm{ct}_{1}, \frac{c}{t_{1}}\right), B\left(c t_{2}, \frac{c}{t_{2}}\right), C\left(c t_{3}, \frac{c}{t_{3}}\right)$
the n orthocentre be
$H\left(\frac{-c}{t_{1} t_{2} t_{3}},-c t_{1} t_{2} t_{3}\right)$ which lies on $x y=c^{2}$
Q. 28 (1)

Curve $\mathrm{xy}=\mathrm{c}^{2}$
Point $P\left(c t, \frac{c}{t}\right)$ Point $Q\left(c^{\prime}, \frac{c}{t^{\prime}}\right)$
Equation of normal $\mathrm{xt}^{3}-\mathrm{yt}=\mathrm{c}\left(\mathrm{t}^{4}-1\right)$
Point Q satisfy the equation $\mathrm{ct}^{\prime} \mathrm{t}^{3}-\frac{\mathrm{c}}{\mathrm{t}^{\prime}} \mathrm{t}=\mathrm{c}\left(\mathrm{t}^{4}-1\right)$
$\mathrm{t}^{\prime} \mathrm{t}^{3}-\frac{\mathrm{t}}{\mathrm{t}^{\prime}}=\mathrm{t}^{4}-1$
$\left(\mathrm{t}^{\prime}\right)^{2} \mathrm{t}^{3}-\mathrm{t}=\mathrm{t}^{\prime}\left(\mathrm{t}^{4}-1\right)$
$\mathrm{t}^{\prime 2} \mathrm{t}^{4}+\mathrm{t}^{\prime}-\mathrm{t}-\mathrm{t}^{\prime} \mathrm{t}^{4}=0$
$\Rightarrow \mathrm{t}^{\prime}\left(\mathrm{t}^{\prime} \mathrm{t}^{3}+1\right)-\mathrm{t}\left(1+\mathrm{t}^{\prime} \mathrm{t}^{3}\right)=0$
$t^{\prime}=t$ or $t^{\prime}=-\frac{1}{t^{3}}$
so only possibility $t^{\prime}=-\frac{1}{t^{3}}$
Q. 29 (1)
by $\mathrm{T}=\mathrm{S}_{1}$

$$
\begin{aligned}
& \frac{\mathrm{xk}+\mathrm{yh}}{2}=\mathrm{hk} \Rightarrow \frac{\mathrm{x}}{\mathrm{~h}}+\frac{\mathrm{y}}{\mathrm{k}}=2 \\
& \therefore \quad \mathrm{~m}=\frac{-1 / \mathrm{h}}{+1 / \mathrm{k}} \\
& \Rightarrow \mathrm{k}+\mathrm{mh}=0 \\
& \Rightarrow \mathrm{y}+\mathrm{mx}=0
\end{aligned}
$$

Slope of tangent at $P=\frac{-1}{t^{2}}$
So slope of normal $=t^{2}$

$t^{2}=\frac{\frac{c}{t_{1}}-\frac{c}{t}}{\left(c t_{1}-c t\right)}$
$t^{2}=\frac{-1}{t_{1} t}$
$t^{3} t_{1}=-1$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (C)
$\mathrm{CA}-\mathrm{r}_{1}=\mathrm{r}$
$\mathrm{CB}-\mathrm{r}_{2}=\mathrm{r}$
$\mathrm{CA}-\stackrel{\mathrm{CB}}{\mathrm{C}}=\mathrm{r}_{1}-\mathrm{r}_{2}=\mathrm{k}$
$\mathrm{CA}-\mathrm{CB}=\mathrm{k}$
\Rightarrow Locus of C will be hyperbola.

Q. 2 (A)

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
\mathrm{e}^{2}=1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}}
$$

$\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}-\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}=1,\left(\mathrm{e}^{\prime}\right)^{2}=1+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}=\frac{\mathrm{b}^{2}+\mathrm{a}^{2}}{\mathrm{~b}^{2}}$
$\frac{1}{e^{2}}+\frac{1}{\left(e^{\prime}\right)^{2}}=\frac{a^{2}}{a^{2}+b^{2}}+\frac{b^{2}}{b^{2}+a^{2}}=\frac{a^{2}+b^{2}}{a^{2}+b^{2}}=1$
So the point lie on $x^{2}+y^{2}=1$
Q. 3 (C)
$9 x^{2}-16 y^{2}-18 x+32 y-151=0$
$9\left(x^{2}-2 x\right)-16\left(y^{2}-2 y\right)-151=0$
$9\left(x^{2}-2 x+1\right)-9-16\left(y^{2}-2 y+1\right)+16-151=0$

$$
9(x-1)^{2}-16(y-1)^{2}=144
$$

$$
\frac{(x-1)^{2}}{\left(\frac{144}{9}\right)}-\frac{(y-1)^{2}}{\left(\frac{144}{16}\right)}=1 \Rightarrow \frac{(x-1)^{2}}{16}-\frac{(y-1)^{2}}{9}=1
$$

$$
\ell(T A)=2 a=8 \quad e^{2}=1+\frac{b^{2}}{a^{2}}
$$

$$
\Rightarrow \mathrm{e}=\frac{5}{4}
$$

$$
\ell(\mathrm{LR})=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\frac{2 \times 9}{4}=\frac{9}{2}
$$

Directries $\mathrm{x}-1=\frac{4}{\left(\frac{5}{4}\right)}$ and $\mathrm{x}-1=-\frac{16}{5}$

$$
x=\frac{21}{5} \quad x=-\frac{11}{5}
$$

Q. 4 (B)

Equation of tangent at $P(\theta)$
$\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$
$\therefore \mathrm{T}(\mathrm{a} \cos \theta, 0), \mathrm{N}(\mathrm{a} \sec \theta, 0)$
OT. $\mathrm{ON}=|\mathrm{a} \cos \theta||\mathrm{a} \sec \theta|=\mathrm{a}^{2}$
Q. 5 (A)
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
tangent at point $\mathrm{P}(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)$
$\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$ or $\frac{x}{a \cos \theta}+\frac{y}{(-b \cot \theta)}=1$
Point $\mathrm{A}(\mathrm{a} \cos \theta, 0), \mathrm{B}(0,-\mathrm{b} \cot \theta)$
Cordinate of point P is
$(\mathrm{h}, \mathrm{k}) \equiv(\mathrm{a} \cos \theta,-\mathrm{b} \cot \theta)$
$\cos \theta=\frac{\mathrm{h}}{\mathrm{a}}, \cot \theta=-\frac{\mathrm{k}}{\mathrm{b}}$
$\cot \theta=\frac{h}{\sqrt{\mathrm{a}^{2}-\mathrm{h}^{2}}}=-\frac{\mathrm{k}}{\mathrm{b}}$
$\frac{h^{2}}{a^{2}-h^{2}}=\frac{k^{2}}{b^{2}}$
$\frac{\mathrm{a}^{2}}{\mathrm{~h}^{2}}-1=\frac{\mathrm{b}^{2}}{\mathrm{k}^{2}}$
So locus is
$\frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}=1$

Q. 6 (D)

Equation of chord of contact from $P\left(x_{1}, y_{1}\right)$

$$
\begin{equation*}
\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

similarly from $Q\left(x_{2} y_{2}\right), \frac{x x_{2}}{a^{2}}-\frac{y y_{2}}{b^{2}}=1 . \ldots \ldots \ldots$
(2)
$\therefore \quad$ Product of slopes $=-1$
$\Rightarrow \frac{x_{1} x_{2}}{y_{1} y_{2}}=-\frac{a^{4}}{b^{4}}$
Q. 7 (C)

Let M(h, k)
Chord with given mid point (h, k)
$\mathrm{T}=\mathrm{S}_{1} \Rightarrow \frac{\mathrm{hx}}{\mathrm{a}^{2}}-\frac{\mathrm{ky}}{\mathrm{b}^{2}}=\frac{\mathrm{h}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{k}^{2}}{\mathrm{~b}^{2}}$
$(\alpha, \beta) \Rightarrow \frac{h \alpha}{a^{2}}-\frac{k \beta}{b^{2}}=\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}$
$\frac{x \alpha}{a^{2}}-\frac{y \alpha}{b^{2}}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$
$\frac{x^{2}}{a^{2}}-\frac{x \alpha}{a^{2}}-\left(\frac{y^{2}}{b^{2}}-\frac{y \beta}{b^{2}}\right)=0$
$\frac{x^{2}}{a^{2}}-\frac{x \alpha}{a^{2}}+\frac{\alpha^{2}}{4 a^{2}}-\frac{\alpha^{2}}{4 a^{2}}-$
$\left(\frac{y^{2}}{b^{2}}-\frac{y \beta}{b^{2}}+\frac{\beta^{2}}{4 b^{2}}-\frac{\beta^{2}}{4 b^{2}}\right)=0$
$\left(\frac{x}{a}-\frac{\alpha}{2 a}\right)^{2}-\left(\frac{y}{b}-\frac{\beta}{2 b}\right)^{2}=\frac{\alpha^{2}}{4 a^{2}}-\frac{\beta^{2}}{4 b^{2}}$
Centre will be $\left(\frac{\alpha}{2}, \frac{\beta}{2}\right)$ And Hyperbola
Q. 8 (D)
$\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$
locus of perpendicular tangents
(Director circle) $x^{2}+y^{2}=a^{2}-b^{2}$
$x^{2}+y^{2}=\cos ^{2} \alpha-\sin ^{2} \alpha=\cos 2 \alpha$
But $0<\alpha<\frac{\pi}{4}$
$\cos \theta<x^{2}+y^{2}<\cos \frac{\pi}{4}$
$0<x^{2}+y^{2}<1$
So there are infinite points.
Q. 9 (A)

Let $\mathrm{P}(\mathrm{a} \cos \theta, \mathrm{a} \sin \theta)$
Equation of QR (c.o.c. w.r.t. p) $\mathrm{T}=0$
$\mathrm{x} \cos \theta-\mathrm{y} \sin \theta=\mathrm{a} \ldots$ (1)
and $\mathrm{T}=\mathrm{S}_{1}$
$h x-k y=h^{2}-k^{2}$
(1) and (2) are same

$\frac{\cos \theta}{h}=\frac{\sin \theta}{k}=\frac{a}{h^{2}-k^{2}}$
square \& add
$\left(x^{2}-y^{2}\right)^{2}=a^{2}\left(x^{2}+y^{2}\right)$
Q. 10 (D)

Let the point $(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)$
C.O.C. : $\frac{x}{a} \sec \theta-\frac{y}{b} \tan \theta=2$

PoI of asymptotes and Eq^{n} (1)
$\mathrm{A}[2 \mathrm{a}(\sec \theta+\tan \theta), 2 \mathrm{~b}(\sec \theta+\tan \theta)$ B[2a $(\sec \theta-\tan \theta),-2 b(\sec \theta-\tan \theta)$
Area of Triangle $\mathrm{OAB}=\frac{1}{2}(8 \mathrm{ab})=4 \mathrm{ab}$
Q. 11 (A)

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Let the any
point be (a, 0)
$\mathrm{P}(\mathrm{a}, \mathrm{b}), \mathrm{Q}(\mathrm{a},-\mathrm{b})$
$P Q=2 b$
$\mathrm{OA}=\mathrm{a}$
Area of $\triangle \mathrm{OPA}=\frac{1}{2} \times \mathrm{a} \times 2 \mathrm{~b}=\mathrm{ab}$
$\Rightarrow \mathrm{ab}=\mathrm{a}^{2} \tan \lambda$
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\tan \lambda$
$e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\tan ^{2} \lambda}=\sec \lambda$
Q. 12 (C)
$\mathrm{P}(\mathrm{a}, 0) ; \mathrm{Q}(\mathrm{a}, \mathrm{b})$
Let M (h, k)
$2 \mathrm{~h}=2 \mathrm{a} \Rightarrow \mathrm{h}=\mathrm{a}$

$k=\frac{b}{2}$
$\left(\frac{h}{a}\right)^{2}-\left(\frac{k}{b}\right)^{2}=1-\frac{1}{4}$
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{3}{4}$ So $k=\frac{3}{4}$

Q. 13 (D)

$\mathrm{xy}=\mathrm{c}^{2}$
Let the point is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ so $\mathrm{x}_{1} \mathrm{y}_{1}=\mathrm{c}^{2}$
slope of tangent at $\left(x_{1}, y_{1}\right) y^{\prime}=-\frac{y_{1}}{x_{1}}$
Equation of tangent $\left(y-y_{1}\right)=-\frac{y_{1}}{x_{1}}\left(x-x_{1}\right)$
$\frac{x}{2 x_{1}}+\frac{y}{2 y_{1}}=1$
Foot of perpendicular from origin $(0,0)$

$$
\frac{x-0}{\frac{1}{2 x_{1}}}=\frac{y-0}{\frac{1}{2 y_{1}}}=-\left(\frac{-1+0+0}{\frac{1}{4 x_{1}^{2}}+\frac{1}{4 y_{1}^{2}}}\right)
$$

$\mathrm{x}=\frac{\frac{1}{2 \mathrm{x}_{1}}}{\frac{1}{4}\left(\frac{1}{\mathrm{x}_{1}^{2}}+\frac{1}{\mathrm{y}_{1}^{2}}\right)}=\frac{2 \mathrm{x}_{1} \mathrm{y}_{1}^{2}}{\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}}$
$y=\frac{2 y_{1} x_{1}^{2}}{x_{1}^{2}+y_{1}^{2}}$
So $\mathrm{h}=\frac{2 \mathrm{x}_{1} \mathrm{y}_{1}^{2}}{\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}}, \mathrm{k}=\frac{2 \mathrm{y}_{1} \mathrm{x}_{1}^{2}}{\left(\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}\right)}$
$h k=\frac{4 x_{1}^{3} y_{1}^{3}}{\left(x_{1}^{2}+y_{1}^{2}\right)^{2}}=\frac{4 c^{6}}{\left(x_{1}^{2}+y_{1}^{2}\right)^{2}}$
$h^{2}+\mathrm{k}^{2}=\frac{4 \mathrm{x}_{1}^{2} \mathrm{y}_{1}^{2}\left(\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}\right)}{\left(\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}\right)^{2}}$
$\left(h^{2}+k^{2}\right)=\frac{4 c^{4}}{\left(x_{1}^{2}+y_{1}^{2}\right)}$
$\left(x_{1}^{2}+y_{1}^{2}\right)=\frac{4 c^{4}}{\left(h^{2}+k^{2}\right)}$
Put the value in equation (i)
$h k=\frac{4 c^{6}}{16 c^{8}} \times\left(h^{2}+k^{2}\right)^{2}$
$4 c^{2} h k=\left(h^{2}+k^{2}\right)^{2}$
So locus is
$\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y$

Q. 14 (B)

Let $\mathrm{P}\left(\mathrm{ct}_{1}, \mathrm{c} / \mathrm{t}_{1}\right), \mathrm{Q}\left(\mathrm{ct}_{2}, \mathrm{c} / \mathrm{t}_{2}\right), \mathrm{R}\left(\mathrm{ct}_{3}, \mathrm{c} / \mathrm{t}_{3}\right)$ and $\mathrm{S}\left(\mathrm{ct}_{4}\right.$, $\mathrm{c} / \mathrm{t}_{4}$)
\therefore by $\mathrm{m}_{\mathrm{PQ}} \cdot \mathrm{m}_{\mathrm{RS}}=-1$
$\Rightarrow \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4}=-1$
and $m_{C P} \times m_{C Q} \times m_{C R} \times m_{C S}=\frac{1}{t_{1}^{2}} \times \frac{1}{t_{2}^{2}} \times \frac{1}{t_{3}^{2}} \times \frac{1}{t_{4}^{2}}=1$

Q. 15 (D)

Mid point of PN is $\left(\mathrm{ct}, \frac{\mathrm{c}}{2 \mathrm{t}}\right)$

Let it be (h, k)

$\therefore \quad h k=\frac{c^{2}}{2}$
\Rightarrow locus $x y=\frac{c^{2}}{2}$ Hyperbola.
Q. 16 (D)

On solving
$\mathrm{xy}=\mathrm{c}^{2}$ with
circle
$x^{2}+y^{2}+2 g x+2 f y+\lambda=0$
$\mathrm{x}^{2}+\frac{\mathrm{c}^{4}}{\mathrm{x}^{2}}+2 \mathrm{gx}+\frac{2 \mathrm{fc}^{2}}{\mathrm{x}}+\lambda=0$
$x^{4}+2 g x^{3}+\lambda x^{2}+2 f^{2} x+c^{4} d=0$

$\therefore \quad \sum \mathrm{x}_{1}=-2 \mathrm{~g}$
$\sum \mathrm{x}_{1} \mathrm{x}_{2}=\lambda$
and again by eleminating x from equation of circle and hyperbola we have

$$
\begin{aligned}
& \Rightarrow \quad y^{4}+2 f^{3}+\lambda y^{2}+2{g c^{2}}^{2} y+c^{4}=0 \\
& \therefore \quad \sum y_{1}=-2 f
\end{aligned}
$$

$$
\sum y_{1} y_{2}=\lambda
$$

Now $\mathrm{CP}^{2}+\mathrm{CQ}^{2}+\mathrm{CR}^{2}+\mathrm{CS}^{2}$
$\sum \mathrm{x}_{1}^{2}+\sum \mathrm{y}_{1}^{2}$
$\Rightarrow\left(\sum \mathrm{x}_{1}\right)^{2}+\left(\sum \mathrm{y}_{1}\right)^{2}-2\left(\sum \mathrm{x}_{1} \mathrm{x}_{2}+\sum \mathrm{y}_{1} \mathrm{y}_{2}\right)$
$\Rightarrow 4 \mathrm{~g}^{2}+4 \mathrm{f}^{2}-4 \lambda$
$\Rightarrow 4 \mathrm{r}^{2}$
Q. 17 (A)

Let $\mathrm{P}\left(\mathrm{ct}_{1}, \mathrm{c} / \mathrm{t}_{1}\right) \mathrm{Q}\left(\mathrm{ct}_{2}, \mathrm{c} / \mathrm{t}_{2}\right)$
$M_{P Q}=\frac{\frac{c}{t_{2}}-\frac{c}{t_{1}}}{c\left(t_{2}-t_{1}\right)}=\frac{-1}{t_{1} t_{2}}$
Equation $y-\frac{c}{t_{1}}=\frac{-1}{t_{1} t_{2}}\left(x-c t_{1}\right)$
$\mathrm{x}+\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{y}=\mathrm{c}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\Rightarrow \frac{x}{\left(c t_{1}+c t_{2}\right)}+\frac{y}{\left(\frac{c}{t_{2}}+\frac{c}{t_{1}}\right)}=1$
$\frac{x}{x_{1}+x_{2}}+\frac{y}{\left(y_{1}+y_{2}\right)}=1$
Q. 18 (C)

Equation of tangent to $x y=c^{2}$
at $\left(c t, \frac{\mathrm{C}}{\mathrm{t}}\right)$ is
$\left(y-\frac{c}{t}\right)=-\frac{1}{t^{2}}(x-c t)$
$\therefore \quad \mathrm{x}_{1}=2 \mathrm{ct}, \mathrm{y}_{1}=\frac{2 \mathrm{c}}{\mathrm{t}}$
and normal $\left(y-\frac{c}{t}\right)=t^{2}(x-c t)$
$\therefore \quad \mathrm{x}_{2}=\mathrm{ct}-\frac{\mathrm{c}}{\mathrm{t}^{3}}, \mathrm{y}_{2}=-\mathrm{ct}^{3}+\frac{\mathrm{c}}{\mathrm{t}}$
$\therefore \quad \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}=0$

Q. 19 (C)

Tangent at P
$\frac{x}{t}+t y=2 c$
Normal at P
$y-\frac{c}{t}=\mathrm{xt}^{2}-\mathrm{ct}^{3}$
$\mathrm{T}(2 \mathrm{ct}, 0) ; \mathrm{T}^{\prime}(0,2 \mathrm{c} / \mathrm{t})$
$\mathrm{N}\left(\mathrm{ct}-\frac{\mathrm{c}}{\mathrm{t}^{3}}, 0\right) ; \mathrm{N}^{\prime}\left(0, \frac{\mathrm{c}}{\mathrm{t}}-\mathrm{ct}^{3}\right)$
$\Delta=$ Area of $\Delta \mathrm{PNT}=\frac{1}{2} \times \frac{\mathrm{c}}{\mathrm{t}}\left[2 \mathrm{ct}-\mathrm{ct}+\frac{\mathrm{c}}{\mathrm{t}^{3}}\right]$
$\Delta=\frac{c^{2}}{2 t^{4}}\left(\mathrm{t}^{4}+1\right)$
$\Delta^{\prime}=$ Area of $\Delta \mathrm{PN}^{\prime} \mathrm{T}^{\prime}$
$=\frac{1}{2} \times c t \times\left[\frac{2 c}{t}-\frac{c}{t}+\mathrm{ct}^{3}\right]=\frac{1}{2} \mathrm{c}^{2}\left(\mathrm{t}^{4}+1\right)$
$\frac{1}{\Delta}+\frac{1}{\Delta^{\prime}}=\frac{2}{c^{2}}$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (C,D)

Given Hyperbola
$9\left(\mathrm{x}^{2}+2 \mathrm{x}+1\right)-16\left(\mathrm{y}^{2}-2 \mathrm{y}+1\right)$
$=151+9-16$
$\Rightarrow \frac{(x+1)^{2}}{16}-\frac{(y-1)^{2}}{9}=1$
foci $(4,1),(-6,1)$
Q. 2 (B,C)

Asymptotes are $\frac{\mathrm{x}}{\mathrm{a}}= \pm \frac{\mathrm{y}}{\mathrm{b}}$
$\tan \theta=\left|\frac{\frac{2 b}{a}}{1-\frac{b^{2}}{a^{2}}}\right| \& e^{2}=1+\frac{b^{2}}{a^{2}}$
$1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}-\frac{2 \mathrm{~b}}{\mathrm{a}} \cot \theta=0$
or $\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}-1-\frac{2 \mathrm{~b}}{\mathrm{a}} \cot \theta=0 \ldots$
by (i) \& (ii)
$\left(\frac{b}{a}\right)^{2} \pm \frac{2 \mathrm{~b}}{\mathrm{a}} \cot \theta-1=0$
$\left(\frac{b}{a}\right)=\frac{ \pm 2 \cot \theta \pm \sqrt{4 \cot ^{2} \theta+4}}{2}$
$\frac{\mathrm{b}}{\mathrm{a}}= \pm(\cot \theta \pm \operatorname{cosec} \theta)$
$e^{2}=1+\frac{b^{2}}{a^{2}}=1+\cot ^{2} \theta+\operatorname{cosec}^{2} \theta \pm 2 \cot \theta \operatorname{cosec} \theta$
$e^{2}=1+\frac{b^{2}}{a^{2}}=1+\cot ^{2} \theta+\operatorname{cosec}^{2} \theta \pm 2 \cot \theta \operatorname{cosec} \theta$
$\mathrm{e}^{2}=2 \operatorname{cosec} \theta(\cot \theta \pm \operatorname{cosec} \theta)$
$\mathrm{e}=\sec \frac{\theta}{2}$ or $\mathrm{e}=\operatorname{cosec} \frac{\theta}{2}$
So $\cos \frac{\theta}{2}=\frac{1}{\mathrm{e}}$ or $\frac{\sqrt{\mathrm{e}^{2}-1}}{\mathrm{e}}$

Q. 3 (A,D)

Distance between foci $=\sqrt{19^{2}+5^{2}}=\sqrt{386}$
Now by PS $+\mathrm{S}^{\prime} \mathrm{P}=2 \mathrm{a}$ (for ellipse)
(take point P at origin) we get $\mathrm{a}=19$
$\therefore \quad 2 \mathrm{ae}=\sqrt{386} \Rightarrow \mathrm{e}=\frac{\sqrt{386}}{38}$
If conic is hyperbola
$\left|P S-P^{\prime}\right|=2 a \Rightarrow a=6$
by $2 \mathrm{ae}^{\prime}=\sqrt{386}$
$\mathrm{e}^{\prime}=\frac{\sqrt{386}}{12}$
Q. 4 (A,B,C,D)
$\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$
$\Rightarrow \quad a^{2}=16, b^{2}=7$
i.e. $a=4, b=\sqrt{7}$
$\therefore \quad e^{2}=\frac{a^{2}-b^{2}}{a^{2}} \Rightarrow \quad e=\frac{3}{4}$
$\therefore \quad$ foci $\equiv(\pm \mathrm{ae}, 0)=(\pm 3,0)$
$\frac{x^{2}}{(144 / 25)}-\frac{y^{2}}{(81 / 25)}=1$
$\Rightarrow \mathrm{a}^{2}=\frac{144}{25}, \mathrm{~b}^{2}=\frac{81}{25}$
i.e. $a=\frac{12}{5}, b=\frac{9}{5}$
$\therefore \mathrm{e}^{2}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}} \quad \Rightarrow \quad \mathrm{e}=\frac{5}{4}$
foci $\equiv(\pm \mathrm{ae}, 0)=(\pm 3,0)$
solving (1) and (2) we get $\quad y^{2}=\frac{63}{25}$
$\Rightarrow \mathrm{y}= \pm \frac{3 \sqrt{7}}{5} \Rightarrow \quad \mathrm{x}= \pm \frac{16}{5}$
one of the point of intersection is $\left(\frac{16}{5}, \frac{3 \sqrt{7}}{5}\right)$
The equation of the asymptote is
$\frac{x^{2}}{144}-\frac{y^{2}}{81}=0$
The abscissa of P is $\frac{16}{5}$
Its ordinate is given by $\frac{y^{2}}{81}=\frac{16 \times 16}{25 \times 144}$

$$
\begin{array}{ll}
\therefore & y= \pm \frac{12}{5} \\
\therefore & P \equiv\left(\frac{16}{5}, \frac{12}{5}\right) \\
\Rightarrow & \left(\frac{16}{5}\right)^{2}+\left(\frac{12}{5}\right)^{2}=16
\end{array}
$$

Equation of the auxiliary circle formed on major axis of ellipse $x^{2}+y^{2}=16 \mathrm{P}$ lies on it.
Q. 5 (B,C,D)

As, $\left|\mathrm{cc}_{1}-\mathrm{cc}_{2}\right|=\left|\left(\mathrm{r}+\mathrm{r}_{1}\right)-\left(\mathrm{r}+\mathrm{r}_{2}\right)\right|=$ constant where $\left|r_{1}-r_{2}\right|<c_{1} c_{2}$
\Rightarrow locus of C is a hyperbola with foci c_{1} and c_{2} i.e., $(-4,0)$ and $(4,0)$.
Also, $2 \mathrm{a}=\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|=2 \Rightarrow \mathrm{a}=1$
Now, $\mathrm{e}=\frac{2 \mathrm{ae}}{2 \mathrm{a}}=\frac{8}{2}=4$

So, $b^{2}=1^{2}\left(4^{2}-1\right)=15$
Hence, locus of centre of circle is hyperbola, whose equation
is $\frac{x^{2}}{1}-\frac{y^{2}}{15}=1$.
Now, verify the options.
Q. 6 (B,C)
$H: \sqrt{3}(x-1)^{2}-y^{2}=-3$
$\Rightarrow \mathrm{H}: \frac{(\mathrm{x}-1)^{2}}{\sqrt{3}}-\frac{\mathrm{y}^{2}}{3}=-1$
auxiliary circle is $(x-1)^{2}+y^{2}=3$
$\Rightarrow \quad x^{2}+y^{2}-2 x-2=0$
$e=\sqrt{1+\frac{\sqrt{3}}{3}}=\sqrt{\frac{3+\sqrt{3}}{3}}$
area of $\Delta L^{\prime} L^{\prime}$ is $=\frac{1}{2}\left(\frac{2 a^{2}}{b}\right) \times(b e)=a^{2} e$

$$
=\sqrt{3} \mathrm{e}=\sqrt{3+\sqrt{3}} \text { sq. units }
$$

Q. 7 (B,C)
$\frac{x^{2}}{3}-\frac{y^{2}}{1}=1$
Asyp $y= \pm \frac{1}{\sqrt{3}} x$
$\Delta \mathrm{OPQ}$ will be equilateral triangle.
PR = 1

area of $\triangle \mathrm{OPQ}=\frac{1}{2} \times \sqrt{3} \times(2)=\sqrt{3}$ sq. units
Q. 8 (A,B,C)

Normal at $\mathrm{P}(\theta) \equiv \mathrm{P}(2 \sec \theta, 2 \tan \theta)$
$2 \mathrm{x} \cos \theta+2 \mathrm{y} \cot \theta=8$
$\Rightarrow \mathrm{x} \cos \theta+\mathrm{y} \cot \theta=4$
$\therefore \mathrm{G}(4 \sec \theta, 0), \mathrm{g}(0,4 \tan \theta)$ and $\mathrm{c}(0,0)$
$\mathrm{PG}=\sqrt{4 \sec ^{2} \theta+4 \tan ^{2} \theta}=\mathrm{PC}=\mathrm{Pg}$
Q. 9 (A,B,C,D)

Let the point is $\mathrm{P}(\mathrm{t})$ so equation of normal at this is $\mathrm{xt}^{3}-\mathrm{yt}=\mathrm{c}\left(\mathrm{t}^{4}-1\right)$
satisfy by $(3,4)$
so $3 t^{3}-4 t=\sqrt{2}\left(t^{4}-1\right)[$ Given $x y=2]$
$\mathrm{t}^{4}-\frac{3}{\sqrt{2}} \mathrm{t}^{3}+2 \sqrt{2} \mathrm{t}-1=0$
here $\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4}=-1$
\& $t_{1}+t_{2}+t_{3}+t_{4}=\frac{3}{\sqrt{2}}$
But in Cartesian from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is
$\mathrm{x}_{1}=\mathrm{ct}_{1} \& \mathrm{y}_{1}=\frac{\mathrm{c}}{\mathrm{t}_{1}}$
$\frac{x_{1} x_{2} x_{3} x_{4}}{c^{4}}=-1$
$\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}=-\mathrm{c}^{4}=-4$
similarly $y_{1} y_{2} y_{3} y_{4}=\frac{c^{4}}{t_{1} t_{2} t_{3} t_{4}}=\frac{4}{-1}=-4$
$y_{1}+y_{2}+y_{3}+y_{4}=c\left(\frac{\sum t_{1} t_{2} t_{3}}{t_{1} t_{2} t_{3} t_{4}}\right)=4$
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=\mathrm{c}\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}\right)=\sqrt{2}\left(\frac{3}{\sqrt{2}}\right)=3$
Q. 10 (A,B)

Let the point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
tangent at P
$\mathrm{xx}_{1}-9 \mathrm{yy}_{1}=9$
$x\left(\frac{x_{1}}{9}\right)-y\left(y_{1}\right)=1$
$\left(\frac{5}{19}\right) x+\left(\frac{12}{19}\right) y=1$
By comparing (1) \& (2)
$\mathrm{x}_{1}=\frac{45}{19}: \mathrm{y}_{1}=\frac{-12}{19}$
Q. 11 (B,D)

Hyperbola if
$h^{2}>a b$
$\Rightarrow \lambda^{2}>(2+\lambda)(\lambda-1)$
$\Rightarrow \lambda<2$
and $D \neq 0 \Rightarrow-2[3 \lambda-4] \neq 0 \Rightarrow \lambda \neq 4 / 3$
Q. 12 (A,C)

Let tangent given by
$y=m x+\sqrt{m^{2}-5}$
$\because \quad$ it passes through $(2,8)$

$$
(8-2 m)^{2}=m^{2}-5
$$

$$
3 m^{2}-32 m+69=0 \Rightarrow m=3 \text { or } 23 / 3
$$

\therefore tangent can be

$$
3 x-y+2=0
$$

or $23 x-3 y-22=0$
Q. 13 (B,D)
$\frac{x^{2}}{18}-\frac{y^{2}}{9}=1$
given line is
$\mathrm{y}=\mathrm{x}$
\therefore slope of tangent
$\therefore \quad$ equation is
$y=m x \pm \sqrt{a^{2} m^{2}-b^{2}} \Rightarrow y=-x \pm 3$
Q. 14 (B,D)
$\mathrm{e}^{2}=1+\frac{3}{9}=\frac{4}{3} \Rightarrow \mathrm{e}=\frac{2}{\sqrt{3}}$
$\Rightarrow(B)$ is correct
$\Rightarrow \quad \theta=60^{\circ}$
angle between the two asymptotes is 120°
\Rightarrow acute angle is $60^{\circ} \Rightarrow(\mathrm{A})$ is correct
C :
L.L.R. $=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=2 \cdot \frac{3}{3}=2$
$\Rightarrow(\mathrm{C})$ is correct
$\mathrm{p}_{1} \mathrm{p}_{2}=\frac{\mathrm{ab}(\sec \theta+\tan \theta)}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}} \frac{\mathrm{ab}(\sec \theta-\tan \theta)}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$

$=\frac{\mathrm{a}^{2} \mathrm{~b}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}\left(\sec ^{2} \theta-\tan ^{2} \theta\right)=\frac{9.3}{12}=\frac{9}{4}$
$\Rightarrow \quad(\mathrm{D})$ is incorrect]
Q. 15 (A,D)
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Asyp. $y= \pm \frac{b}{a} x$
$m_{1}=\frac{b}{a}$ and $m_{2}=-\frac{b}{a}$
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{\frac{b}{a}+\frac{b}{a}}{1-\frac{b^{2}}{a^{2}}}\right|$
$\tan \theta=\frac{2 \mathrm{ab}}{\mathrm{a}^{2}-\mathrm{b}^{2}} \Rightarrow \tan \frac{\theta}{2}=\frac{\mathrm{b}}{\mathrm{a}}$ and $-\frac{\mathrm{a}}{\mathrm{b}}$
$\sec \frac{\theta}{2}=\sqrt{1+\frac{b^{2}}{a^{2}}}$ and $\sec \frac{\theta}{2}=\sqrt{1+\frac{a^{2}}{b^{2}}}=e=\frac{1}{e}$
Comprehension \# 1 (Q. No. 16 to 18)
Q. 16 (B)
Q. 17 (D)
Q. 18 (B)

Sol. $16 \frac{x^{2}}{a^{2}}-1=\frac{y^{2}}{b^{2}}$

$\frac{(x-a)(x+a)}{y^{2}}=\frac{a^{2}}{b^{2}}$
$\frac{(\mathrm{NA})\left(\mathrm{NA}^{\prime}\right)}{(\mathrm{PN})^{2}}=\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}$

Sol. 17 PQ = NQ - NP

$$
\begin{aligned}
&= \frac{b}{a} x-\frac{b}{a} \sqrt{x^{2}-a^{2}} \\
& P Q^{\prime}=\frac{b}{a} x+\frac{b}{a} \sqrt{x^{2}-a^{2}} \\
& \Rightarrow P Q \cdot P Q^{\prime}=\frac{b^{2}}{a^{2}} x^{2}-\frac{b^{2}}{a^{2}}\left(x^{2}-a^{2}\right)=b^{2}
\end{aligned}
$$

Comprehension \# 2 (Q. No. 19 to 21)

Q. 19 (D)
Q. 20 (C)
Q. 21 (B)

Sol. 19 Let the asymptotes be $2 x+3 y+\lambda=0$ and $3 x+2 y+$ $\mu=0$
Since, asymptotes passes through (1, 2), then
$\lambda=-8$ and $\mu=-7$
Let the equation of hyperbola be
$(2 x+3 y-8)(3 x+2 y-7)+\gamma=0$
...(i)
\because It passes through $(5,3)$, then
$(10+9-8)(15+6-7)+\gamma=0$
$\Rightarrow 11 \times 14+\gamma=0$
$\therefore \gamma=-154$
Putting the value of γ in Eq. (i), then

$$
(2 x+3 y-8)(3 x+2 y-7)=154
$$

Sol. 20 The transverse axis is the bisector of the angle between asymptotes containing the origin and the conjugate axis is the other bisector. The bisectors of the angle between asymptotes are

$$
\frac{(3 x-4 y-1)}{5}= \pm \frac{(4 x-3 y-6)}{5}
$$

$\Rightarrow(3 x-4 y-1)= \pm(4 x-3 y-6)$
$\Rightarrow x+y-5=0$ and $x-y-1=0$
Hence, transverse axis and conjugate axis are $x+y-$ $5=0$ and $x-y-1=0$

Sol. $21 \quad \because 16 x^{2}-25 y^{2}=400$

Let $\mathrm{P}(5 \sec \phi, 4 \tan \phi)$ be any point on the hyperbola (i)

Equation of tangent at P is

$$
\frac{x}{5} \sec \phi-\frac{y}{4} \tan \phi=1 \ldots(\text { ii })
$$

And asymptotes of Eq. (i) are

$$
\begin{equation*}
y= \pm \frac{4}{5} x \tag{iii}
\end{equation*}
$$

solving Eqs. (ii) and (iii), then

$$
\frac{x}{5} \sec \phi \mp \frac{x}{5} \tan \phi=1
$$

or $x=\frac{5}{(\sec \phi \mp \tan \phi)}$

$$
=\frac{5(\sec \phi+\tan \phi)(\sec \phi-\tan \phi)}{(\sec \phi \mp \tan \phi)}
$$

then we get
$\mathrm{A} \equiv[5(\sec \phi+\tan \phi), 4(\sec \phi+\tan \phi)]$
and $B \equiv[(5(\sec \phi-\tan \phi),-4(\sec \phi-\tan \phi)]$
\therefore Area of $\triangle \mathrm{ABC}$

Comprehension \# 3 (Q. No. 22 to 24)
Q. 22 (C)
Q. 23 (B)
Q. 24 (A)

Sol. 22 PQ - PA = PB - PQ
$\Rightarrow \mathrm{QA}=\mathrm{BQ}$
$\therefore \quad \mathrm{Q}$ is mid point of AB , Let $\mathrm{Q}=(\mathrm{h}, \mathrm{k})$
Equation of chord AB
$\mathrm{T}=\mathrm{S}_{1}$
$\frac{1}{2}(x k+y h)=h k$
It passes through $\mathrm{P}(-1,2)$
$\therefore \quad$ locus of Q is $2 \mathrm{x}-\mathrm{y}=2 \mathrm{xy}$

Sol. $23 \frac{x+1}{\cos \theta}=\frac{y-2}{\sin \theta}=r$
$x=r \cos \theta-1, \quad y=2+r \sin \theta$
Putting it in $x y=c^{2}$
$r^{2} \sin \theta \cos \theta+r(2 \cos \theta-\sin \theta)-2-c^{2}=0$
PA. $\mathrm{PB}=\frac{-\left(2+\mathrm{c}^{2}\right)}{\sin \theta \cos \theta}=\mathrm{PQ}^{2}$
$2+\mathrm{c}^{2}+(\mathrm{PQ} \sin \theta)(\mathrm{PQ} \cos \theta)=0$
$2+c^{2}+(y-2)(x+1)$
$x y+y-2 x+c^{2}=0$
Sol. $24 \frac{2}{P Q}=\frac{P A+P B}{P A P B}$
Gives $2 \mathrm{x}-\mathrm{y}=2 \mathrm{c}^{2}$
Q. 25 (A) - (q), (B) - (s), (C) - (s), (D) - (q)
(A) $y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$
$y=x \pm \sqrt{5-b^{2}}$
$\therefore \mathrm{b}=0, \pm 1, \pm 2$
b can not be zero
\therefore four values are possible
(B) We have, $a=3$ and $\frac{b^{2}}{a}=4 b^{2}=12$

Hence, the equation of the hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{12}=1$
$4 x^{2}-3 y^{2}=36$
(C) The product of the lengths of the perpendiculars from the two focii on any tangent to the hyperbola
$\frac{x^{2}}{25}-\frac{y^{2}}{3}=1$ is 3
$\therefore 3=\sqrt{\mathrm{k}}$, hence $\mathrm{k}=9$
(D) Equation of the hyperbola can be written as

$$
\frac{X^{2}}{5^{2}}-\frac{Y^{2}}{4^{2}}=1
$$

where $X=x-3$ and $Y=y-2$.
\therefore tangent $Y=X \pm \sqrt{25-16}$
$\Rightarrow y=x+2$ or $y=x-4$
Q. $26 \quad(\mathrm{~A}) \rightarrow(\mathrm{r}, \mathrm{t}) ;(\mathrm{B}) \rightarrow(\mathrm{p}, \mathrm{s}) ;(\mathrm{C}) \rightarrow(\mathrm{s})$
(A) $12 \mathrm{x}^{2}-4 \mathrm{y}^{2}-24 \mathrm{x}+32 \mathrm{y}-127=0$
$\Rightarrow 12\left(\mathrm{x}^{2}-2 \mathrm{x}\right)-4\left(\mathrm{y}^{2}-8 \mathrm{y}\right)-127=0$
$\Rightarrow 12\left\{(\mathrm{x}-1)^{2}-1\right)-4\left\{(\mathrm{y}-4)^{2}-16\right\}=127$
$\Rightarrow 12(\mathrm{x}-1)^{2}-4(\mathrm{y}-4)^{2}=75$
$\Rightarrow \frac{12(x-1)^{2}}{75}-\frac{4(y-4)^{2}}{75}=1$
$\Rightarrow \frac{75}{4}=\frac{75}{12}\left(\mathrm{e}^{2}-1\right)$
$\Rightarrow 3=\mathrm{e}^{2}-1$
$\Rightarrow \mathrm{e}^{2}=4$
$\therefore \mathrm{e}=2$
For foci $x-1= \pm\left(\frac{5}{2} \times 2\right)$ and $y-4=0$
$\Rightarrow \mathrm{x}=1 \pm 5$ and $\mathrm{y}=4$
foci are $(-4,4)$ and $(6,4)$
(r, t)
(B) $8 x^{2}-y^{2}-64 x+10 y+71=0$
$\Rightarrow 8\left(\mathrm{x}^{2}-8 \mathrm{x}\right)-\left(\mathrm{y}^{2}-10 \mathrm{y}\right)+71=0$
$\Rightarrow 8\left\{(x-4)^{2}-16\right\}-\left\{(y-5)^{2}-25\right\}+71=0$
$\Rightarrow 8(x-4)^{2}-(y-5)^{2}=32$
$\Rightarrow \frac{(x-4)^{2}}{4}-\frac{(y-5)^{2}}{32}=1$
$\Rightarrow \quad 32=4\left(\mathrm{e}^{2}-1\right)$
$\Rightarrow 8=\mathrm{e}^{2}-1$
$\therefore \mathrm{e}=3$
For foci $\mathrm{x}-4= \pm(2 \times 3)$
and $y-5=0$

$$
x=4 \pm 6 \text { and } y=5
$$

Foci are $(10,5)$ and $(-2,5)$
(C) $9 x^{2}-16 y^{2}-36 x+96 y+36=0$
$\Rightarrow 9\left(x^{2}-4 x\right)-16\left(y^{2}-6 y\right)+36=0$
$\Rightarrow 9\left\{(x-2)^{2}-4\right\}-16\left\{(y-3)^{2}-9\right\}+36=0$
$\Rightarrow 9(x-2)^{2}-16(y-3)^{2}=-144$
$\Rightarrow-\frac{(x-2)^{2}}{16}+\frac{(y-3)^{2}}{9}=1$
$\Rightarrow \quad 16=9\left(\mathrm{e}^{2}-1\right)$
$\Rightarrow 25=9 \mathrm{e}^{2}$
$\therefore \quad e=\frac{5}{3}$
For foci $\mathrm{x}-2=0$
and $y-3= \pm\left(3 \times \frac{5}{3}\right)$
$\Rightarrow \mathrm{x}=2$ and $\mathrm{y}=3 \pm 5$
\therefore Foci are $(2,-2)$ and $(2,8)$
(s)
Q. $27(\mathrm{~A}) \rightarrow(\mathrm{q}),(\mathrm{B}) \rightarrow(\mathrm{p}),(\mathrm{C}) \rightarrow(\mathrm{q}),(\mathrm{D}) \rightarrow(\mathrm{r})$
(A) Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
\therefore normal $y-y_{1}=-\frac{y_{1}}{x_{1}}\left(x-x_{1}\right)$
$\Rightarrow \quad x_{1} y+y_{1} x=2 x_{1} y_{1}$
$\therefore \quad \mathrm{G}\left(2 \mathrm{x}_{1}, 0\right)$ and $\mathrm{g}\left(0,2 \mathrm{y}_{1}\right)$
$\therefore \quad \mathrm{PG}=\mathrm{PC}=\mathrm{Pg}=\sqrt{\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}}=\frac{\mathrm{Gg}}{2}$
(B) Since $x+y=a$ touches the hyperbola $x^{2}-2 y^{2}=18$
$\therefore \quad x^{2}-2(a-x)^{2}=18$ has equal roots
i.e. $x^{2}-4 a x+18+2 a^{2}=0$ has equal roots
$\therefore \quad 16 a^{2}-4\left(18+2 a^{2}\right)=0$
$8 a^{2}-72=0$
$\mathrm{a}= \pm 3$
$\therefore \quad|\mathrm{b}|=3$
(C) By property, orthocentre always lie on rect. hyperbola
$\therefore \lambda \times 4=16$
$\therefore \lambda=4$
(D) Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ and here $\mathrm{S}(\mathrm{a} \sqrt{2}, 0)$ and $\mathrm{S}^{\prime}(-\mathrm{a} \sqrt{2}, 0)$

$$
\begin{aligned}
& \text { directrices are } x=\frac{a}{\sqrt{2}} \text { and } x=-\frac{a}{\sqrt{2}} \\
& \text { SP. S'P }=\sqrt{2}\left|x-\frac{a}{\sqrt{2}}\right| \cdot \sqrt{2}\left|x+\frac{a}{\sqrt{2}}\right| \\
& =2 x^{2}-a^{2}=x^{2}+y^{2}=(C P)^{2}
\end{aligned}
$$

NUMERICAL VALUE BASED

Q. 1 (1)

$$
\begin{aligned}
& e=\sqrt{1-\frac{5}{9}}, e^{\prime}=\sqrt{1+\frac{45 / 4}{45 / 5}} \\
& e=\frac{2}{3}, e^{\prime}=\frac{3}{2} \\
& \therefore \quad e^{\prime} e^{\prime}=1
\end{aligned}
$$

Q. 2 (2)

ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Hyperbola, $\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1$
$\therefore \quad \mathrm{e}_{1}^{2}=1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}, \mathrm{e}_{2}^{2}=1+\frac{\mathrm{B}^{2}}{\mathrm{~A}^{2}}$
and $2 \mathrm{ae}_{1}=2 \mathrm{Ae}_{2}$
Also, $\mathrm{b}=\mathrm{B}$
So, $\frac{b}{a e_{1}}=\frac{B}{A e_{2}}$
$\therefore e_{1}^{2}=1-\frac{\mathrm{B}^{2}}{\mathrm{~A}^{2}} \frac{\mathrm{e}_{1}^{2}}{\mathrm{e}_{2}^{2}}$
$=1-\frac{\left(e_{2}^{2}-1\right) e_{1}^{2}}{e_{2}^{2}}$
$e_{1}^{2} e_{2}^{2}=e_{2}^{2}-e_{1}^{2} e_{2}^{2}+e_{1}^{2}$
$\Rightarrow \mathrm{e}_{1}^{-2}+\mathrm{e}_{2}^{-2}=2$
Q. 3 (1)

$C P \equiv \frac{x-0}{\cos \theta}=\frac{y-0}{\sin \theta}=r_{1}$ where $C P=r_{1}$
$\therefore \mathrm{P}\left(\mathrm{r}_{1} \cos \theta, \mathrm{r}_{1} \sin \theta\right)$
Similarly $\quad Q\left(r_{2} \cos \left(\frac{\pi}{2}+\theta\right), r_{2} \sin \left(\frac{\pi}{2}+\theta\right)\right)$
$\mathrm{Q}\left(-\mathrm{r}_{2} \sin \theta, \mathrm{r}_{2} \cos \theta\right)$
P \& Q lies on Hyperbola

$$
\therefore \quad \mathrm{r}_{1}^{2}\left(\frac{\cos ^{2} \theta}{\mathrm{a}^{2}}-\frac{\sin ^{2} \theta}{\mathrm{~b}^{2}}\right)=1
$$

$$
\begin{array}{ll}
\therefore & r_{1}^{2}=\frac{a^{2} b^{2}}{\left(b^{2} \cos ^{2} \theta-a^{2} \sin ^{2} \theta\right)} \\
\& & r_{2}^{2}=\frac{a^{2} b^{2}}{\left(b^{2} \sin ^{2} \theta-a^{2} \cos ^{2} \theta\right)} \\
\therefore & \frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}=\frac{b^{2}-a^{2}}{a^{2} b^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}} \text { H.P. }
\end{array}
$$

Q. 4 (6)

Hyp. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ Let the point $\mathrm{P}(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)$
Asy $y= \pm \frac{b}{a} x$
$a y-b x=0$ and $a y+b x=0$
$\mathrm{p}=\mathrm{p}_{1} \cdot \mathrm{p}_{2}$
$\left.=\left|\frac{a b \tan \theta-a b \sec \theta}{\sqrt{a^{2}+b^{2}}}\right| \frac{a b \tan \theta+a b \sec \theta}{\sqrt{a^{2}+b^{2}}} \right\rvert\,$
$p=\frac{a^{2} b^{2}}{a^{2}+b^{2}} \Rightarrow \frac{a^{2} b^{2}}{a^{2}+b^{2}}=6$.
$\mathrm{e}^{2}=1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}}$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}=3 \mathrm{a}^{2}$
(1) and (2) $b^{2}=18$
$\Rightarrow \mathrm{a}^{2}=9 \Rightarrow \mathrm{a}=3=\mathrm{TA}=2 \mathrm{a}=6$
Q. $5 \quad(0)$
by $\mathrm{H}+\mathrm{H}^{\prime}=2 \mathrm{~A}$ we get combined eqn ${ }^{\mathrm{n}}$ of Asymptotes as
$A=0 \Rightarrow x^{2}+3 x y+2 y^{2}+2 x+3 y+\left(1+\frac{c}{2}\right)=0$
It represents pair of straight line then $\mathrm{c}=0$
by $\left|\begin{array}{ccc}1 & 3 / 2 & 1 \\ 3 / 2 & 2 & 3 / 2 \\ 1 & 3 / 2 & \left(1+\frac{c}{2}\right)\end{array}\right|=0$
Q. 6 (77)

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the hyperbola
Then by focus directrix property
$\frac{\text { distance of } P \text { from the focus }}{\text { distance of } P \text { from the directrix }}=e=3$
$\therefore\left|\frac{\sqrt{(x+1)^{2}+(y-1)^{2}}}{\frac{x-y+3}{\sqrt{1^{2}+(-1)^{2}}}}\right|=3$
or $\quad(x+1)^{2}+(y-1)^{2}=9 \cdot\left(\frac{x-y+3}{\sqrt{2}}\right)^{2}$
or $7 x^{2}-18 x y+7 y^{2}+50 x-50 y+77=0$
Tangent to the hyp. $x y=-c^{2}$
$\frac{x}{x_{1}}+\frac{y}{y_{1}}=2(16,1)$
$\frac{x}{16}+\frac{y}{1}=2$
$x+16 y=32$
A(32, 0)
$\mathrm{B}(0,2)$

Area $=\frac{1}{2} \times 2 \times 32=32$ Sq. unit
Q. 8 (10)

It is clear from the diagram distance

between point of contacts is 10
Q. 9 (22)

Let $\left(x_{1}, y_{1}\right)$ be the pt, of contact of tangent
$3 \mathrm{x}-4 \mathrm{y}=5$ to $\mathrm{x}^{2}-4 \mathrm{y}^{2}=5$ Solving we have
$\Rightarrow \quad\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(3,1)$
Now any tangent to $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ is
$y=m x \pm \sqrt{25 m^{2}-16}$
$\Rightarrow \quad y^{2}+m^{2} x^{2}-2 m x y=25 m^{2}-16$
$\because \quad(1)$ passes through $(3,1)$
$\therefore \quad 16 \mathrm{~m}^{2}+6 \mathrm{~m}-17=0$
Let $\quad m_{1} \& m_{2}$ be the roots of (ii) and $m_{1}+m_{2}=-$
$\frac{3}{8}$ and $m_{1} m_{2}=\frac{-17}{16}$
$\therefore \quad 32\left(\mathrm{~m}_{1}+\mathrm{m}_{2}-\mathrm{m}_{1} \mathrm{~m}_{2}\right)=22$
Q. 10 (4)
$3 x^{2}-2 y^{2}=6$
$\frac{x^{2}}{2}-\frac{y^{2}}{3}=1$

Let the equation of tangent
$y=m x+\sqrt{a^{2} m^{2}-b^{2}}$
passes through (α, β)
$(\beta-m \alpha)^{2}=a^{2} m^{2}-b^{2}$
$m^{2} \alpha^{2}+\beta^{2}-2 m \alpha \beta=a^{2} m^{2}-b^{2}$
$m^{2}\left(\alpha^{2}-a^{2}\right)-2 m \alpha \beta+\beta^{2}+b^{2}=0$
$m_{1} m_{2}=\frac{\beta^{2}+b^{2}}{\alpha^{2}-a^{2}}=2$
$2 \alpha^{2}-2 a^{2}=\beta^{2}+b^{2}$
or $\quad 2 \alpha^{2}-4=\beta^{2}+3$
$\beta^{2}=2 \alpha^{2}-7$
Q. 11 (0030)

Tangent on $(3 \sec \phi, 4 \tan \phi)$ is

$$
\begin{equation*}
\frac{\sec \phi}{3} x-\frac{\tan \phi}{4} y=1 \tag{i}
\end{equation*}
$$

given that (i) is \perp to $3 x+8 y-12=0$
$\Rightarrow \quad \frac{4}{3}\left(\frac{\sec \phi}{\tan \phi}\right)\left(\frac{-3}{8}\right)=-1$
$\Rightarrow \quad \phi=30^{\circ}$
Q. 12 (0025)
P is $(3 \sec \theta, 4 \tan \theta)$
Tangent at P is $\frac{x}{3} \sec \theta-\frac{y}{4} \tan \theta=1$
It meets $4 x-3 y=0 \quad$ i.e. $\quad \frac{x}{3}=\frac{y}{4}$ in Q

$$
\therefore \quad \mathrm{Q} \text { is }\left(\frac{3}{\sec \theta-\tan \theta}, \frac{4}{\sec \theta-\tan \theta}\right)
$$

It meets $4 x+3 y=0$
i.e. $\quad \frac{x}{3}=-\frac{y}{4}$ in R
$\therefore \quad \mathrm{R}$ is $\left(\frac{3}{\sec \theta+\tan \theta}, \frac{-4}{\sec \theta+\tan \theta}\right)$
$\therefore \mathrm{CQ} . \mathrm{CR}=\left(\frac{\sqrt{3^{2}+4^{2}}}{\sec \theta-\tan \theta}\right)\left(\frac{\sqrt{3^{2}+4^{2}}}{\sec \theta+\tan \theta}\right)=25$

KVPY

PREVIOUS YEAR'S

Q. 1 (B)

$x^{2}-y^{2}=a^{2}$
$\mathrm{A}(-\mathrm{a}, 0)$
B (a $\sec \theta$, a $\tan \theta)$
B $(a \sec \theta,-a \tan \theta)$
$\mathbf{M}_{\mathrm{AB}}=\tan 30^{\circ}=\frac{a \tan \theta}{a \sin \theta+1}=\frac{1}{\sqrt{3}}$
$\sqrt{3} \tan \theta=1+\sin \theta$
$\sqrt{3} \tan \theta=1+\sec \theta$
$(\sqrt{3} \tan \theta-1)^{2}=\sec ^{2} \theta$
$3 \tan ^{2} \theta-2 \sqrt{3} \tan \theta+1=1+\tan ^{2} \theta$
$3 \tan ^{2} \theta-2 \sqrt{3} \tan \theta=0$
$\tan \theta=\sqrt{3}$
side length $=2 \mathrm{a} \tan \theta$
$=2 \mathrm{a} \sqrt{3}$
$=2 \sqrt{3} \mathrm{a}$
$K=2 \sqrt{3}$

Q. 2 (A)

Total diagonals $={ }^{15} \mathrm{C}_{2}-15=90$
Shortest diagonal $=$ Diagonal connecting

$$
\begin{aligned}
& \left(\mathrm{A}_{1} \mathrm{~A}_{3}, \mathrm{~A}_{2} \mathrm{~A}_{4}, \ldots\right) \\
& =15
\end{aligned}
$$

longest diagonal $=$ Diagonal connecting (A1A8, A1A9, ...)
$=15$
Required probability $=\frac{90-15-15}{90}$

$$
=\frac{60}{90}=\frac{2}{3}
$$

JEE MAIN

PREVIOUS YEAR'S

Q. 1 (2)

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

$$
a=5, b=4
$$

$e=\sqrt{1-\frac{16}{25}}=\frac{3}{5}$
focii : $(3,0),(-3,0)$
let equatio of hyperbola is $\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1$
satisfy $(\pm 3,0) \Rightarrow \frac{9}{A^{2}}=1 \Rightarrow A^{2}=9$
eccentricity of hyperbola
$=\frac{1}{\text { eccentricity of ellipse }}=\frac{5}{3}$
$\Rightarrow \frac{5}{3}=\sqrt{1+\frac{\mathrm{B}^{2}}{9}} \Rightarrow 1+\frac{\mathrm{B}^{2}}{9}=\frac{25}{9} \Rightarrow \mathrm{~B}^{2}=16$
equation of hyperbola is
$\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
Q. 2 (4)
$\mathrm{x}^{2}+\mathrm{y}^{2}=25$

Equation of chord
$y-k=-\frac{h}{k}(x-h)$
$\mathrm{ky}-\mathrm{k}^{2}=-\mathrm{hx}+\mathrm{h}^{2}$
$h x+k y=h^{2}+k^{2}$
$y=-\frac{h x}{k} \quad \frac{h^{2}+k^{2}}{k}$
tangent to $\frac{x^{2}}{9} \quad \frac{y^{2}}{16}=1$
$c^{2}=a^{2} m^{2}-b^{2}$
$\left(\frac{\mathrm{h}^{2}+\mathrm{k}^{2}}{\mathrm{k}}\right)^{2}=9\left(-\frac{\mathrm{h}}{\mathrm{k}}\right)^{2}-16$
$\left(x^{2}+y^{2}\right)^{2}=9 x^{2}-16 y^{2}$
Q. 3 (80)
$x y=1,-1$

$\frac{\mathrm{t}_{1}+\mathrm{t}_{2}}{2} \cdot \frac{\frac{1}{\mathrm{t}_{1}}-\frac{1}{\mathrm{t}_{2}}}{2}=1$
$\Rightarrow \mathrm{t}_{1}^{2}-\mathrm{t}_{2}^{2}=4 \mathrm{t}_{1} \mathrm{t}_{2}$
$\frac{1}{\mathrm{t}_{1}^{2}} \times\left(-\frac{1}{\mathrm{t}_{2}^{2}}\right)=-1 \Rightarrow \mathrm{t}_{1} \mathrm{t}_{2}=1$
$\Rightarrow\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)^{2}=1 \Rightarrow \mathrm{t}_{1} \mathrm{t}_{2}=1$
$\mathrm{t}_{1}{ }^{2}-\mathrm{t}_{1}{ }^{2}=4$
$\Rightarrow \mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}=\sqrt{4^{2}+4}=2 \sqrt{5}$
$\Rightarrow \mathrm{t}_{1}^{2}=2+\sqrt{5} \Rightarrow \frac{1}{\mathrm{t}_{1}^{2}}=\sqrt{5}-2$
$A B^{2}=\left(t_{1}-t_{2}\right)^{2}+\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}\right)^{2}$
$=2\left(\mathrm{t}_{1}^{2}+\frac{1}{\mathrm{t}_{1}^{2}}\right)=4 \sqrt{5} \Rightarrow$ Area $^{2}=80$

Q. 4 (3)

$\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$
$e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{\frac{3}{2}}$
\therefore Focus $\mathrm{F}(\mathrm{ae}, 0) \Rightarrow \mathrm{F}(\sqrt{6}, 0)$
equation of tangent at P to the hyperbola is
$2 x-y \sqrt{6}=2$
tangent meet x -axis at $\mathrm{Q}(1,0)$
$\&$ latus rectum $x=\sqrt{6}$ at $R\left(\sqrt{6}, \frac{2}{\sqrt{6}}(\sqrt{6}-1)\right)$
\therefore Area of $\Delta_{\mathrm{QFR}}=\frac{1}{2}(\sqrt{6}-1) \cdot \frac{2}{\sqrt{6}}(\sqrt{6}-1)$
$=\frac{7}{\sqrt{6}}-2$
Q. 5 (4)
Q. 6 (1)
Q. 7
Q. 8
(3)
(3)
Q. 9
[5]

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (B, D)

Eccentricity of ellipse $=\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2}$
$\Rightarrow \sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\frac{2}{\sqrt{3}}$
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{1}{\sqrt{3}}$
focus of ellipse $(\pm \sqrt{3}, 0) \Rightarrow \frac{(\sqrt{3})^{2}}{a^{2}}=1$
$\Rightarrow \mathrm{a}=\sqrt{3}$
$\Rightarrow \mathrm{b}=1 \quad \&$ focus of hyperbola $(\pm 2,0)$
Hence equation of hyperbola $\frac{x^{2}}{3}-\frac{y^{2}}{1}=1$
Q. 2 (B)

Equation of normal at $\mathrm{P}(6,3)$
$\frac{a^{2} x}{6}+\frac{b^{2} y}{3}=a^{2}+b^{2}$
It passes through $(9,0)$
$\frac{3}{2} a^{2}=a^{2}+b^{2}$
$\Rightarrow \frac{3}{2}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}}=1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}$
$\Rightarrow e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{\frac{3}{2}}$
Q. 3 (AB)

Slope of tangents $=2$
Equation of tangents $y=2 x \pm \sqrt{9.4-4}$
$\Rightarrow \mathrm{y}=2 \mathrm{x} \pm \sqrt{32}$
$\Rightarrow 2 x-y \pm 4 \sqrt{2}=0$
Let point of contact be ($\mathrm{x}_{1}, \mathrm{y}_{1}$)
then equation (i) will be identical to the equation

$$
\begin{aligned}
& \frac{\mathrm{xx}_{1}}{9}-\frac{\mathrm{yy}_{1}}{4}-1=0 \\
& \therefore \frac{\mathrm{x}_{1} / 9}{2}=\frac{\mathrm{y}_{1} / 4}{1}=\frac{-1}{ \pm 4 \sqrt{2}}
\end{aligned}
$$

$\Rightarrow\left(x_{1}, y_{1}\right) \equiv\left(-\frac{9}{2 \sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ and $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
Q. 4 (A,C,D)
$y=2 x+1$ is tangent to $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$
$c^{2}=a^{2} m^{2}-b^{2}$
$1=4 \mathrm{a}^{2}-16 \Rightarrow \mathrm{a}^{2}=\frac{17}{4}$
[check if $\mathrm{p}^{2}=\mathrm{q}^{2}+\mathrm{r}^{2}$]
Q. 5 (B)

$\tan 30^{\circ}=\frac{\mathrm{b}}{\mathrm{a}}$
$\Rightarrow \mathrm{a}=\mathrm{b} \sqrt{3}$
Now area of $\Delta \mathrm{LMN}=\frac{1}{2} \cdot 2 \mathrm{~b} \cdot \mathrm{~b} \sqrt{3}$
$4 \sqrt{3}=\sqrt{3} b^{2}$
$\Rightarrow \mathrm{b}=2 \& \mathrm{a}=2 \sqrt{3}$
$\Rightarrow e \sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\frac{2}{\sqrt{3}}$
P. Length of conjugate axis $=2 b=4$

So $\mathrm{P} \rightarrow 4$
Q. Eccentricity $\mathrm{e}=\frac{2}{\sqrt{3}}$

So $\mathrm{Q} \rightarrow 3$
R. Distance between foci $=2 \mathrm{ae}$
$=2(2 \sqrt{3})\left(\frac{2}{\sqrt{3}}\right)=8$
So $\mathrm{R} \rightarrow 1$
S. Length of latus rectum $=$

$$
\begin{aligned}
& \frac{2 b^{2}}{a}=\frac{2(2)^{2}}{2 \sqrt{3}}=\frac{4}{\sqrt{3}} \\
& S \rightarrow 2
\end{aligned}
$$

(A, D)

Since Normal at point P makes equal intercept on coordinate axes, therefore slope of Normal $=-1$
Hence slope of tangent = 1
Equation of tangent
$y-0=1(x-1)$
$y=x-1$
Equation of tangent at $\left(x_{1} y_{1}\right)$
$\frac{x_{1}}{a^{2}}-\frac{\mathrm{yy}_{1}}{\mathrm{~b}^{2}}=1$
$x-y=1$ (equation of Tangent)
on comparing $\mathrm{x}_{1}=\mathrm{a}^{2}, \mathrm{y}_{1}=\mathrm{b}^{2}$
Also $\mathrm{a}^{2}-\mathrm{b}^{2}=1$
Now equation of normal at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{a}^{2}, \mathrm{~b}_{1}{ }^{2}\right)$
$\mathrm{y}-\mathrm{b}^{2}=-1\left(\mathrm{x}-\mathrm{a}^{2}\right)$
$x+y=a^{2}+b^{2} \ldots$ (Normal)
point of intersection with x-axis is $\left(a^{2}+b^{2}\right)$
Now $\mathrm{e}=\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}$
$e=\sqrt{1+\frac{b^{2}}{b^{2}+1}}$
$\left[\operatorname{from}(1) \frac{b^{2}}{b^{2}+1}<1\right]$
$1<\mathrm{e}<\sqrt{2}$
Option (A)
$\Delta=\frac{1}{2} \cdot \mathrm{AB} \cdot \mathrm{PQ}$
and $\Delta=\frac{1}{2}\left(\mathrm{a}^{2}+\mathrm{b}^{2}-1\right) \cdot \mathrm{b}^{2}$
$\Delta=\frac{1}{2}\left(2 b^{2}\right) b^{2}\left(\right.$ from (1) $\left.\quad a^{2}-1=b^{2}\right)$
$\Delta=b^{4}$ so option (D)

Set and Relation

EXERCISES

JEE-MAIN

OBJECTIVE PROBLEMS

Q. 1
(2)

A $=\{2,3,4 \ldots \ldots \ldots .$.
B $=\{0,1,2,3 \ldots \ldots \ldots .$.
$A \cap B=\{2,3\}$
Then $\mathrm{A} \cap \mathrm{B}$ is $\{x: x \in \mathrm{R}, 2 \leq x<4\}$
Q. 2 (2)
$\Delta=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right| \forall a_{i} \in\{0,1\}$
This deter minant will take value $\mathrm{O}, 1$ or -1 only \& ' 1 ' will be taken same no. of times as -1 ; so $n(B)=n(C)$
Q. 3 (3)
$\mathrm{A}=\{\phi,\{\phi\}\}$
$\mathrm{P}(\mathrm{A})=$ set containing all subsets
$=\{\phi,\{\phi\},\{\{\phi\}\},\{\phi,\{\phi\}\}$
$=\{\phi,\{\phi\},\{\{\phi\}\}, \mathrm{A}\}$
Q. 4 (1)
$A=\{2,3\} ; B=\{1,2\}$
$\mathrm{A} \times \mathrm{B}=\{(2,1),(2,2),(3,1),(3,2)\}$
Q. 5 (3)
$n(\mathrm{~A} \cap \mathrm{~B})=\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})-n\left(\mathrm{~A}^{\prime} \cap \mathrm{B}^{\prime}\right)$

$$
=200+300-100
$$

$n(\mathrm{~A} \cap \mathrm{~B})=400$
Now $n\left(\mathrm{~A}^{\prime} \cap \mathrm{B}^{\prime}\right)=\mathrm{U}-n(\mathrm{~A} \cup \mathrm{~B})$
(De marganistans)
$=700-400=300$
Q. 6 (4)
conceptual
$2^{\text {n }}$
Q. 7 (1)

P: a ρ biff $|a-b| \leq \frac{1}{2}$
Reflexive : $\mathrm{a} \rho \mathrm{b}:|0-\mathrm{a}| \leq \frac{1}{2}$ (True)
Symmetric : $\mathrm{a} \rho \mathrm{b} \Rightarrow \mathrm{b} \rho \mathrm{a}$

$$
|\mathrm{a}-\mathrm{b}| \leq \frac{1}{2} \Rightarrow|\mathrm{~b}-\mathrm{a}| \leq \frac{1}{2} \text { (True) }
$$

Transitive : $\mathrm{a} \rho \mathrm{b}: \mathrm{b} \rho \mathrm{a} \Rightarrow \mathrm{a} \rho \mathrm{c}$

$$
\begin{aligned}
& |a-b| \leq \frac{1}{2} ;|b-c| \leq \frac{1}{2} \\
& \Rightarrow|a-c| \leq \frac{1}{2}
\end{aligned}
$$

so not transitive
Q. 8 (2)

Reflexive relation : a R a
but identity relation is $\mathrm{y}=\mathrm{x}: \mathrm{x} \in \mathrm{A} \& \mathrm{y} \in \mathrm{A}$
so $I \subset R$
Q. 9 (2)
$R=\{(1,2),(2,3)\}$
for Reflexive : a R a
for symmetric : $\mathrm{a} \mathrm{R} \Rightarrow \Rightarrow \mathrm{b}$ a
for transitive : $\mathrm{aRb}, \mathrm{bRc} \Rightarrow \mathrm{aRc}$
So elements to be added
$\{(1,1),(2,2),(3,3),(2,1),(3,2),(1,3),(3,1)\}$
Q. 10 (3)
for $\mathrm{x}=2, \mathrm{y}=3 \in \mathrm{~N}$
$x=4, y=2 \in N$
$\mathrm{x}=6, \mathrm{y}=1 \in \mathrm{~N}$
Q. 11 (3)
$(4,2) \in R$ but $(2,4) \notin R \quad \&$
$(2,3) \in R$ but $(3,2) \notin R$
KVPY

PREVIOUS YEAR'S

Q. 1 (A)

for $\mathrm{A} \cap \mathrm{B}$
$\cos (\sin \theta)=1$ or $-1 \& \sin (\cos \theta)=0$
which is not possible
or $\cos (\sin \theta)=0 \& \sin (\cos \theta)=1$ or -1
also not possible
so $A \cap B$ is an empty set
Q. 2 (C)
$\mathrm{A}=\{1,2,6,7,11,12,16,17,21,22,26,27,31,32,36,37\}$
\& One of the element which is multiple of 5
$B=\{3,4,8,9,13,14,18,19,23,24,28,29,33,34,38,39\}$
\& One of the element which is multiple of 5
Q. 3 (C)

Good subset is total number of symmetric subset
Q. 4 (D)
$\mathrm{n}+1, \mathrm{n}+2, \ldots \ldots . \mathrm{n}+18$
(A) False, if $\mathrm{n}=19$
(C) False if $\mathrm{n}=15$

16 to 33
20, $25,30 \circledR$ only three multiples of 5
(D) no. of odd integers in $\mathrm{S}_{\mathrm{n}}=9$
every third odd integer is multiple of 3
so maximum prime no. $=6$
Q. 5 (C)
$100000 \leq$ ababab <1000000
$\leq 10^{5} \mathrm{a}+10^{4} \mathrm{~b}+10^{3} \mathrm{a}+100 \mathrm{~b}+10 \mathrm{a}+\mathrm{b}<1000000$
$\leq \mathrm{a}\left(10^{5}+10^{3}+10\right)+\mathrm{b}\left(10^{4}+10^{2}+1\right) \leq 1000000$
$100000 \leq\left(10^{4}+10^{2}+1\right)(100 \mathrm{a}+\mathrm{b})<100000$
$100000 \leq 10101(\mathrm{ab})<100000$
$9.9 \leq \mathrm{ab} \leq 99$
' $a b$ ' number can be obtained as product of ordered pairs (2, 5); (2, 11); (2, 17); (2, 19); (2, 23); (2, 29); (2, 3 (1 (2, 41); (2, 43); (2, 47); (5, 11); (5, 17); (5, 19)
Total number $=13$
Q. 6 (C)
${ }^{5} \mathrm{C}_{2} 2+{ }^{5} \mathrm{C}_{3} \frac{3!}{1!}+{ }^{5} \mathrm{C}_{4}\left[\frac{4!2!}{1!3!}+\frac{4!}{1!2!}\right]+\frac{5!2!}{1!4!}+\frac{5!2!}{2!3!}$
$20+10 \times 6+5[8+6]+10+20=180$
Q. 7 (C)

As $n \rightarrow \infty$
$|\sin \sqrt{x+1}-\sin \sqrt{x}| \rightarrow 0$
\therefore There exist infinite natural numbers for which $|\sin \sqrt{x+1}-\sin \sqrt{x}|<\lambda \forall \lambda>0$

Hence $\mathrm{A}_{\frac{1}{2}}, \mathrm{~A}_{\frac{1}{3}}, \mathrm{~A}_{\frac{2}{5}}$ are all infinite sets
Q. $8 \quad$ (B)

$|a-c|<b+d<a+c$
(a, c) $(\mathrm{b}, \mathrm{d})(1,3)(5,6)$

$$
(1,3)(4,5)
$$

and $(1,3)(4,6)$
Now make different combination. Total of 11 combination are possible.
Q. 9 (D)
$\cos x+\cos \sqrt{2} x<2$
$\cos x £ 1$ and $\cos \sqrt{2} x \leq 15$
$\cos x+\cos \sqrt{2} x \leq 15$ at $x=0 \cos x+\cos \sqrt{2} x=2$ PxîR-\{0\}
Q. 10 (C)

$$
\begin{aligned}
& \frac{2 a-1}{b} \geq 1 \Rightarrow a \geq \frac{b+1}{2} \Rightarrow \frac{1}{a} \leq \frac{2}{b+1} \\
& \Rightarrow \frac{2 b-1}{a} \leq \frac{4 b-2}{b+1}=4-\frac{6}{b+1}<4 \\
& \Rightarrow \frac{2 b-1}{a}=1,2,3
\end{aligned}
$$

$2 \mathrm{~b}-1$ is odd $\Rightarrow \frac{2 \mathrm{~b}-1}{\mathrm{a}}=1,3$

Case (i) Let $\frac{2 \mathrm{~b}-1}{\mathrm{a}}=1$
$\Rightarrow \frac{2 a-1}{b}=\frac{2(2 a-1)}{a+1}=4-\frac{6}{a+1}$
for $\mathrm{a}=1, \frac{2 \mathrm{a}-1}{\mathrm{~b}}=4-3=1 \quad \Rightarrow \mathrm{a}=1, \mathrm{~b}=1$
for $\mathrm{a}=3, \frac{2 \mathrm{a}-1}{\mathrm{~b}}=4-\frac{3}{2} \notin \mathrm{I}$
for $\mathrm{a}=5, \frac{2 \mathrm{a}-1}{\mathrm{~b}}=4-1=3 \quad \Rightarrow \mathrm{a}=5, \mathrm{~b}=3$
case (ii) Let $\frac{2 \mathrm{~b}-1}{\mathrm{a}}=3$
$\Rightarrow \mathrm{a}=3, \mathrm{~b}=5$ (similar as case (i))
Q. 11 (A)
$\left(1+a^{2}\right)\left(1+b^{2}\right)=4 a b$
$\Rightarrow\left(\mathrm{a}+\frac{1}{\mathrm{a}}\right)\left(\mathrm{b}+\frac{1}{\mathrm{~b}}\right)=4$
$\Rightarrow \mathrm{a}=1$ and $\mathrm{b}=1$
but $a \neq 1$ so no value of b
Q. 12 (A)
$\mathrm{fn}=(\mathrm{n}+1)^{1 / 3}-\mathrm{n}^{1 / 3}$
Rationalising f_{n} get
$\mathrm{f}_{\mathrm{n}}=\frac{1}{(\mathrm{n}+1)^{2 / 3}+\mathrm{n}^{1 / 3}(\mathrm{n}+1)^{1 / 3}+\mathrm{n}^{2 / 3}}>\frac{1}{3(\mathrm{n}+1)^{2 / 3}}$
Similarty

$$
\mathrm{f}_{\mathrm{n}}+1=\frac{1}{(\mathrm{n}+1)^{2 / 3}+(\mathrm{n}+1)^{1 / 3}+(\mathrm{n}+2)^{1 / 3}+(\mathrm{n}+1)^{2 / 3}}>\frac{1}{3(\mathrm{n}+1)^{2 / 3}}
$$

Hence $\mathrm{f}_{\mathrm{n}}+\mathrm{l}=\frac{1}{3(\mathrm{n}+1)^{2 / 3}}<\mathrm{f}_{\mathrm{n}} \forall \mathrm{n} \in \mathrm{N}$
Hence A = N
Q. 13 (A)
(I) This relation is reflexive relation because every natural no. divides square of itself $\mathrm{a} \mathrm{R} a \Leftrightarrow$ a divides a^{2}
(II) not symmetric eg. 5 R $10 \Leftrightarrow 5$ Divide 100

But 10 R $5 \nRightarrow 10$ Divide 25 ?
(III) Not transitivity for example
if 8 R $4 \& 4$ R $2 \nRightarrow 8$ R 2
only (I) Option

Q. 14 (D)

$\mathrm{n}(\mathrm{A} \times \mathrm{A})=100$
number of (a,a) type pairs is 10
number of (a, b) and ($b, a)$ type pair of pairs is $45(a \neq b)$
so, required number of relations is
$2^{90}-2^{45}$

JEE MAIN
 PREVIOUS YEAR'S

Q. 1 (5.00)

3 digit number of the form $9 \mathrm{~K}+2$ are \{101,109, \qquad ,992\}
\Rightarrow Sum equal to $\frac{100}{2}(1093)$
Similarly sum of 3 digit number of the form $9 K+5$
is $\frac{100}{2}$ (1099)

$$
\begin{aligned}
\frac{100}{2}(1093)+\frac{100}{2}(1099) & =100 \times(1096) \\
& =400 \times 274 \\
& \Rightarrow \ell=5
\end{aligned}
$$

Q. 2 (3)

A $\cap \mathrm{B} \cap \mathrm{C}$ is visible in all three venn diagram
Hence, Option (3)
Q. 3 (832)
Q. 4 (5143)
Q. 5 (3)
Q. 6 (1)

The equivalence class containing $(1,-1)$ for this relation is $\mathrm{x}^{2}+\mathrm{y}^{2}=2$
Q. 7 (4)
$\mathrm{A}=\{2,3,4,5, \ldots, 30\}$
$(\mathrm{a}, \mathrm{b}) \simeq(\mathrm{c}, \mathrm{d}) \Rightarrow \mathrm{ad}=\mathrm{bc}$
$(4,3) \simeq(c, d) \Rightarrow 4 d=3 c$
$\Rightarrow \frac{4}{3}=\frac{\mathrm{c}}{\mathrm{d}}$
$\frac{\mathrm{c}}{\mathrm{d}}=\frac{4}{3} \quad \& \chi, \delta \in\{2,3, \ldots \ldots, 30\}$
$(\mathrm{c}, \mathrm{d})=\{(4,3),(8,6),(12,9),(16,12),(20,15)$,
$(24,18),(28,21)\}$
No. of ordered pair $=7$
Q. 8 (3)
A and B are matrices of $n \times n$ order \& ARB iff there exists a non singular matrix $\mathrm{P}(\operatorname{det}(\mathrm{P}) \neq 0)$ such that $\mathrm{PAP}^{-1}=\mathrm{B}$

For reflexive

ARA \Rightarrow PAP-1 $=\mathrm{A} . .$. (1) must be true
for $P=I$, Eq.(1) is true so ' R ' is reflexive

For symmetric

ARB $\Leftrightarrow P A P^{-1}=B \ldots(1)$ is true
for BRA iff $\mathrm{PBP}^{-1}=\mathrm{A} \quad$...(2) must be true
Q $P_{A P}{ }^{-1}=\mathrm{B}$
$\mathrm{P}^{-1} \mathrm{PAP}^{-1}=\mathrm{P}^{-1} \mathrm{~B}$
$I_{A P}{ }^{-1} P=P^{-1} B P$
$\mathrm{A}=\mathrm{P}^{-1} \mathrm{BP}$
from (2) \& (3) $\mathrm{PBP}^{-1}=\mathrm{P}^{-1} \mathrm{BP}$
can be true some $\mathrm{P}=\mathrm{P}^{-1} \Rightarrow \mathrm{P}^{2}=\mathrm{I}(\operatorname{det}(\mathrm{P}) \neq 0)$
So ' R ' is symmetric
For trnasitive
$\mathrm{ARB} \Leftrightarrow \mathrm{PAP}^{-1}=\mathrm{B} . .$. is true
$\mathrm{BRC} \Leftrightarrow \mathrm{PBP}^{-1}=\mathrm{C} \ldots$ is true
now PPAP $^{-1} \mathrm{P}^{-1}=\mathrm{C}$
$\mathrm{P}^{2} \mathrm{~A}\left(\mathrm{P}^{2}\right)^{-1}=\mathrm{C} \Rightarrow \mathrm{ARC}$
So ' R ' is transitive relation
\Rightarrow Hence R is equivalence

Q. 9	(2)
Q. 10	(2)

JEE ADVANCED

PREVIOUS YEAR'S

Q. 1 [3748]
$\mathrm{X}: 1,6,11$, \qquad 10086
Y:9, 16, 23, 14128
$X \cap Y: 16,51,86$, \qquad
Let $\mathrm{m}=\mathrm{n}(\mathrm{X} \cap \mathrm{Y})$
$\therefore 16+(\mathrm{m}-1) \times 35 \leq 10086$
$\Rightarrow \mathrm{m} \leq 288.71$
$\Rightarrow \mathrm{m}=288$
$\therefore \mathrm{n}(\mathrm{X} \cup \mathrm{Y})=\mathrm{n}(\mathrm{X})+\mathrm{n}(\mathrm{Y})-\mathrm{n}(\mathrm{X} \cap \mathrm{Y})$

$$
=2018+2018-288=3748
$$

Q. 2 (A,B,D)
(A) $\mathrm{n}_{1}=10 \times 10 \times 10=1000$
(B) As per given condition $1 \leq \mathrm{i}<\mathrm{j}+2 \leq 10 \Rightarrow \mathrm{j} \leq 8$ \& $\mathrm{i} \geq 1$
for $\mathrm{i}=1,2, \quad \mathrm{j}=1,2,3, \ldots, 8 \rightarrow(8+8)$ possibilities
for $\mathrm{i}=3, \quad \mathrm{j}=2,3, \ldots, 8 \rightarrow 7$ possibilities
$\mathrm{i}=4, \quad \mathrm{j}=3, \ldots, 8 \rightarrow 6$ possibilities
$\mathrm{i}=9, \quad \mathrm{j}=1 \quad \rightarrow 1$ possibility
So $\mathrm{n}_{2}=(1+2+3+\ldots .+8)+8=44$
(C) $\mathrm{n}_{3}={ }^{10} \mathrm{C}_{4}$ (Choose any four)
$=210$
(D) $\mathrm{n}_{4}={ }^{10} \mathrm{C}_{4} \cdot 4!=(210)(24)$
$\Rightarrow \frac{\mathrm{n}_{4}}{12}=420$
So correct Ans. (A), (B), (D)

Mathematical Reasoning

EXERCISES

JEE-MAIN

OBJECTIVE PROBLEMS

Q. 1 (3)

Here option A, B, \& D is mathematical acceptable sentance so these are statement but option C is interogative sentance so it is nto statement.
Q. 2 (3)

A, B \rightarrow imperative sentence
D \rightarrow exclametry sentence
C \rightarrow Mathematically acceptable statement it is univossal fact
so the sun is a star is a statement.
Q. 3 (3)
$\sim(\mathrm{p} \wedge \mathrm{q})=\sim \mathrm{p} \vee \sim \mathrm{q}$
$\sim(2+3=5$ and $8<10)=2+3 \neq 5$ or $8 \nless 10$
Q. 4 (3)
$\sim(\mathrm{p} \vee \mathrm{q})=\sim \mathrm{p} \wedge \sim \mathrm{q}$
so monu is not in class X or Anu is not in class XII
Q. 5 (2)

If p then q is false

p	q	$\mathrm{p} \rightarrow \mathrm{q}$
T	T	T
T	P	F
F	T	T
F	F	T

$$
\begin{aligned}
& \mathrm{p} \rightarrow \mathrm{q}: \mathrm{F} \\
& \mathrm{p}: \mathrm{T}, \mathrm{q}: \mathrm{F}
\end{aligned}
$$

Q. 6 (3)
$(\sim \mathrm{p} \vee \mathrm{q}) \wedge(\sim \mathrm{p} \wedge \sim \mathrm{q})$ is

p	q	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\sim \mathrm{p} \vee \mathrm{q}$	$\sim \mathrm{p} \wedge \sim \mathrm{q}$	$(\sim \mathrm{p} \vee \mathrm{q}) \wedge(\sim \mathrm{p} \wedge \sim \mathrm{q})$
T	T	F	F	T	F	F
T	F	F	T	F	F	F
F	T	T	F	T	F	F
F	F	T	T	T	T	T

\therefore neither tautology nor contradiction
Q. 7 (4)

Fundamental concept of distribution law

$$
\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})=(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r}) .
$$

Q. $8 \quad$ (2)

p	q	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathrm{q} \rightarrow \sim \mathrm{p}$	$\mathrm{p} \rightarrow \mathrm{q} \quad \Rightarrow \sim \mathrm{q} \rightarrow \sim \mathrm{p}$
T	T	F	F	T	T	T
T	F	F	T	F	F	T
F	T	T	F	T	T	T
F	F	T	T	T	T	T

hence
$\mathrm{p} \rightarrow \mathrm{q} \Rightarrow \sim \mathrm{q} \rightarrow \sim \mathrm{p}$ is tautology
Q. 9 (1)

Ram is smart and Ram is intelligent $\Rightarrow(\mathrm{p} \wedge \mathrm{q})$
Q. 10 (2)

It is a fundamental concept.
Q. 11 (3)

Contrapositive of $\mathrm{p} \Rightarrow \sim \mathrm{q}$ is $\mathrm{q} \Rightarrow \sim \mathrm{p}$
Q. 12 (4)
$\triangle \mathrm{ABC}$ is equilateral triangle if each angle is $60^{\circ} \mathrm{p} \Leftrightarrow$ q.
Q. 13 (3)
$\sim(p \vee q) \Rightarrow \sim p \wedge \sim q$
Q. 14 (3)
$\mathrm{s}=\mathrm{p} \Rightarrow \mathrm{q} \wedge \sim \mathrm{q}$ is contradiction

p	s	$\mathrm{p} \rightarrow \mathrm{s}$
T	F	F
F	F	T

Q. 15 (3)
$\sim(\mathrm{p} \wedge \mathrm{q}) \mathrm{v} \sim(\mathrm{q} \Leftrightarrow \mathrm{p})$

p	q	$\sim(\mathrm{p} \wedge \mathrm{q})$	$\sim(\mathrm{q} \Leftrightarrow \mathrm{p})$	s
T	T	F	F	F
T	F	T	T	T
F	T	T	T	T
F	F	T	F	T

Q. 16 (2)

Equations are not a statement but 5 is natural no. is a statement.
Q. 17
(1)
Q. 18 (1)

p	q	$\sim \mathrm{p}$	pvq	$\sim(\mathrm{pvq})$	$\sim \mathrm{p}^{\wedge} \mathrm{q}$	$\sim(\mathrm{pvq}) \mathrm{v}\left(\sim \mathrm{p}^{\wedge} \mathrm{q}\right)$
T	T	F	T	F	F	F
T	F	F	T	F	F	F
F	T	T	T	F	F	T
F	F	T	F	T	T	T

So, $\sim(p \vee q) \vee(\sim p \wedge q)$ is logically equivalent to $\sim p$
Q. 19 (2)
$\mathrm{p} \rightarrow \mathrm{q}$ is false only when p is true and q is false.
$p \rightarrow(\sim p \vee q)$ is false only when p is true and $(\sim p \vee q)$ is false.
$\sim p \vee q$ is false if q is false, because $\sim p$ is false.

Q. 20 (1)

p	q	$\sim \mathrm{p}$	$\mathrm{p} \Leftrightarrow \mathrm{q}$	$\sim \mathrm{p} \wedge(\mathrm{p} \Leftrightarrow \mathrm{q})=\mathrm{s}$	$\sim \mathrm{s}=\mathrm{p} \vee \mathrm{q}$
T	T	F	T	F	T
T	F	F	F	F	T
F	T	T	F	F	T
F	F	T	T	T	F

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (1)

Contrapositive of $\mathrm{A} \rightarrow(\mathrm{B} \rightarrow \mathrm{A})$ is
$\sim(\mathrm{B} \rightarrow \mathrm{A}) \rightarrow \sim \mathrm{A}$
$(\mathrm{B} \wedge \rightarrow \mathrm{A}) \rightarrow \sim \mathrm{A}$
Q. 2 (2)
p: you work ward
q : you will earn
given ($p \rightarrow \mathrm{q}$)
contrapositive of $(\mathrm{p} \rightarrow \mathrm{q})=\sim \mathrm{q} \rightarrow \sim \mathrm{p}$
Q.3. (2)

$$
\begin{aligned}
& \sim(\sim \mathrm{p} \wedge(\mathrm{p} \vee \mathrm{q})) \\
& =\sim(\sim \mathrm{p} \wedge \mathrm{p}) \vee(\sim \mathrm{p} \wedge \mathrm{q})) \\
& =\sim(\sim \mathrm{p} \wedge \mathrm{q})=\mathrm{p} \vee \sim \mathrm{q}
\end{aligned}
$$

Q. 4 (1)
$\mathrm{A} \wedge(\sim \mathrm{A} \vee \mathrm{B}) \rightarrow \mathrm{B}$
$=[(A \wedge \sim A) \vee(A \wedge B)] \rightarrow B$
$=(A \wedge B) \rightarrow B$
$=\sim \mathrm{A} \vee \sim \mathrm{B} \vee \mathrm{B} \quad=\mathrm{t}$
Q. 5 (3)

$$
(\sim \mathrm{A} \vee \mathrm{~B}) \equiv
$$

$$
\sim \mathrm{C} \wedge(\mathrm{~A} \vee \mathrm{~B})
$$

Tautology
Truth tabel for $\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$

A	B	C	$\sim \mathrm{A}$	$\sim \mathrm{C}$	$\mathrm{A} \vee \mathrm{B}$	$\sim \mathrm{A} \vee \mathrm{B}$	$\sim \mathrm{C} \wedge(\mathrm{A} \vee \mathrm{B})$	$(\sim \mathrm{A} \vee \mathrm{B}) \vee(\sim \mathrm{C} \wedge(\mathrm{A} \vee \mathrm{B})) \vee \sim \mathrm{A}$
T	T	T	F	F	T	T	F	T
T	F	F	F	T	T	F	T	T
T	T	F	F	T	T	T	T	T
T	F	T	F	F	T	F	F	F
F	T	T	T	F	T	T	F	T
F	F	F	T	T	F	T	F	T
F	T	F	T	T	T	T	T	T
F	F	T	T	F	F	T	F	T

Truth table for F_{2}

A	B	$\mathrm{A} \vee \mathrm{B}$	$\sim \mathrm{B}$	$\mathrm{A} \rightarrow \sim \mathrm{B}$	$(\mathrm{A} \vee \mathrm{B}) \vee(\mathrm{A} \rightarrow \sim \mathrm{B})$
T	T	T	F	F	T
T	F	T	T	T	T
F	T	T	F	T	T
F	F	F	T	T	T

F_{1} not shows tautology and F_{2} shows tautology.
(4)

p	q	$\mathrm{p} \wedge \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	$(\mathrm{p} \wedge \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$
T	T	T	T	T
T	F	F	F	T
F	T	F	T	T
F	F	F	T	T

$(\mathrm{p} \wedge \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$ is tautology

Q. $7 \quad$ (1)

$\mathrm{Qp} \rightarrow \mathrm{q} \equiv \sim \mathrm{p} \vee \mathrm{q}$
So, * $\equiv \mathrm{v}$
Thus, $\mathrm{p}^{*}(\sim \mathrm{q}) \equiv \mathrm{pv}(\sim \mathrm{q})$
$\equiv \mathrm{q} \rightarrow \mathrm{p}$
Q. 8 (1)

Option (1)
$(\mathrm{p} \wedge \mathrm{q}) \longrightarrow(\mathrm{p} \rightarrow \mathrm{q})$
$=\sim(\mathrm{p} \wedge \mathrm{q}) \vee(\sim \mathrm{p} \vee \mathrm{q})$
$=(\sim p \vee \sim q) \vee(\sim p \vee q)$
$=\sim p \vee(\sim q \vee q)$
$=\sim \mathrm{p} \vee \mathrm{t}$
$=\mathrm{t}$

Option (2)

$(p \wedge q) \wedge(p \vee q)=(p \wedge q)($ Not a tautology $)$
Option (3)
$(p \wedge q) \vee(p \rightarrow q)$
$=(p \wedge q) \vee(\sim p \vee q)$
$=\sim \mathrm{p} \vee \mathrm{q}$ (Not a tautology)

Option (4)

$=(p \wedge q) \wedge(\sim p \vee q)$
$=p \wedge q($ Not a tautology $)$
Option (1)
Q. 9 (2)

LHS of all the options are some i.e.
$((\mathbf{P} \rightarrow \mathrm{Q}) \wedge \sim \mathrm{Q})$
$\equiv(\sim \mathrm{P} \vee \mathrm{Q}) \wedge \sim \mathrm{Q}$
$\equiv(\sim \mathrm{P} \wedge \sim \mathrm{Q}) \vee(\mathrm{Q} \wedge \sim \mathrm{Q})$
$\equiv \sim \mathrm{P} \wedge \sim \mathrm{Q}$
(A) $(\sim P \wedge \sim Q) \rightarrow Q$
$\equiv \sim(\sim \mathrm{P} \wedge \sim \mathrm{Q}) \vee \mathrm{Q}$
$\equiv(\mathrm{P} \vee \mathrm{Q}) \vee \mathrm{Q} \neq$ tautology
(B) $(\sim \mathrm{P} \wedge \sim \mathrm{Q}) \rightarrow \sim \mathrm{P}$
$\equiv \sim(\sim \mathrm{P} \wedge \sim \mathrm{Q}) \vee \sim \mathrm{P}$
$\equiv(\mathrm{P} \vee \mathrm{Q}) \vee \sim \mathrm{P}$

(C) $(\sim P \wedge \sim Q) \rightarrow P$
$\equiv(\mathrm{P} \vee \mathrm{Q}) \vee \mathrm{P} \neq$ Tautology
(D) $(\sim \mathrm{P} \wedge \sim \mathrm{Q}) \rightarrow(\mathrm{P} \wedge \mathrm{Q})$
$\equiv(\mathrm{P} \vee \mathrm{Q}) \vee(\mathrm{P} \wedge \mathrm{Q}) \neq$ Tautology

Aliter :

P	Q	$\mathrm{P} \vee \mathrm{Q}$	$\mathrm{P} \vee \mathrm{Q}$	$\sim \mathrm{P}$	$(\mathrm{P} \vee \mathrm{Q}) \vee \sim \mathrm{P}$
T	T	T	T	F	T
T	F	T	F	F	T
F	T	T	F	T	T
F	F	F	F	T	T

Q. 10 (4)
Q. 11 (4)
Q. 12
Q. 13 (4)
Q. 14 (1)
Q. 15 (2)
Q. 16 (2)
Q. 17 (4)

p	q	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\mathrm{p}-\mathrm{q}$	$\sim(\mathrm{p} \rightarrow \mathrm{q})$	$\mathrm{q} \rightarrow \mathrm{p}$	$\sim(\mathrm{q} \rightarrow \mathrm{p})$
T	T	F	F	T	F	T	F
T	F	F	T	F	T	T	F
F	T	T	F	T	F	F	T
F	F	T	T	T	F	T	F

$\mathrm{p} \wedge \sim \mathrm{q}$	$\sim \mathrm{p} \rightarrow \sim \mathrm{q}$	$\mathrm{p} \rightarrow \sim \mathrm{q}$	$\sim(\mathrm{p} \rightarrow \sim \mathrm{q})$
F	T	F	T
T	T	T	F
F	F	T	F
F	T	T	F

$\mathrm{p} \wedge \sim \mathrm{q} \equiv \sim(\mathrm{p} \rightarrow \mathrm{q})$
Opation (4)
Q. 18 (1)
Q. 19 (3)
Q. 20 (3)
Q. 21 (3)
Q. 22 (16)
Q. 23 (1)
Q. 24 (3)

Mathematical Induction

EXERCISES

JEE-MAIN

OBJECTIVE PROBLEMS

Q. 1 (1)

$\mathrm{P}(\mathrm{n}): \mathrm{a}^{2 \mathrm{n}-1}+\mathrm{b}^{2 \mathrm{n}-1}$
$P(1): a^{1}+b^{1}=a+b$, which is divisible by itself, i.e. by ($\mathrm{a}+\mathrm{b}$).
$\therefore \mathrm{P}(\mathrm{n}): \mathrm{a}^{2 \mathrm{n}-1}+\mathrm{b}^{2 \mathrm{n}-1}$ is divisible by $(\mathrm{a}+\mathrm{b})$, and is true for $\mathrm{n}=1$
Let $\mathrm{P}(\mathrm{k})$ be true, i.e. $\mathrm{P}(\mathrm{k}): \mathrm{a}^{2 \mathrm{k}-1}+\mathrm{b}^{2 \mathrm{k}-1}$ is divisible by ($a+b$)
i.e. $a^{2 k-1}+b^{2 k-1}=m(a+b)$

Now,
$\mathrm{P}(\mathrm{k}+1)=\mathrm{a}^{2 \mathrm{k}+1}+\mathrm{b}^{2 \mathrm{k}+1}=\mathrm{a}^{2 \mathrm{k}-1} \cdot \mathrm{a}^{2}+\mathrm{b}^{2 \mathrm{k}+1}$
$=\mathrm{a}^{2}\left[\mathrm{~m}(\mathrm{a}+\mathrm{b})-\mathrm{b}^{2 \mathrm{k}-1}\right]+\mathrm{b}^{2 \mathrm{k}+1}$
$=m(a+b) a^{2}-a^{2} b^{2 k-1}+b^{2 k+1}$
$=m(a+b) a^{2}-b^{2 k-1}\left(a^{2}-b^{2}\right)$
$=m(a+b) a^{2}-(a+b)(a-b) b^{2 k-1}$
$=(a+b)\left[m a^{2}-(a-b) b^{2 k-1}\right]$
$\therefore \mathrm{P}(\mathrm{k}+1)$ is divisible by $(\mathrm{a}+\mathrm{b})$ whenever $\mathrm{P}(\mathrm{k})$ is divisible by $(a+b)$.
Hence $P(n)$ is divisible by $(a+b)$ for all $n \in N$. Ans.
Q. 2 (2)
$\mathrm{P}(\mathrm{n}):(\mathrm{n}+1)(\mathrm{n}+2) \ldots(\mathrm{n}+\mathrm{r})$
$\mathrm{P}(1):(2)(3) \ldots \ldots .(r+1)=r!(r+1)$, which is divisible by r !
Let $\mathrm{P}(\mathrm{k}):(\mathrm{k}+1)(\mathrm{k}+2)$ \qquad $(\mathrm{k}+\mathrm{r})=\mathrm{r}!(\mathrm{m})$
$\therefore \mathrm{P}(\mathrm{k}+1):(\mathrm{k}+2)(\mathrm{k}+3)$ $\ldots(k+1+r)=r!(\lambda)$
L.H.S. of $\mathrm{P}(\mathrm{k}+1)$

$$
\begin{aligned}
& =(\mathrm{k}+2)(\mathrm{k}+3) \ldots(\mathrm{k}+\mathrm{r}+1) \\
& =\frac{(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3) \ldots .(\mathrm{k}+\mathrm{r}+1)}{\mathrm{k}+1} \\
& =\frac{\mathrm{r}!(\mathrm{m})(\mathrm{k}+\mathrm{r}+1)}{\mathrm{k}+1}=\mathrm{r}!(\lambda) .
\end{aligned}
$$

Thus, $\mathrm{P}(\mathrm{k}+1)$ is divisible by r ! whenever $\mathrm{P}(\mathrm{k})$ is divisible by r!
Hence $\mathrm{P}(\mathrm{n})$ is divisible by r ! for all $\mathrm{n} \in \mathrm{N}$. Ans.
$P(n): 49^{n}+16 n-1$
$P(1): 49+16-1=64$, which is divsible by 64
Let $\mathrm{P}(\mathrm{k}): 49^{\mathrm{k}}+16 \mathrm{k}-1=64 \mathrm{~m}$
$\therefore P(k+1): 49^{k+1}+16(k+1)-1=64 \lambda$
L.H.S. of $P(k+1)=49^{k+1}+16(k+1)-1$

$$
=49(64 \mathrm{~m}-16 \mathrm{k}+1)+16 \mathrm{k}+16-1
$$

[Assuming $\mathrm{P}(\mathrm{k})$ to be true]

$$
=64(49 m)-48(16 k)+64
$$

$$
=64(49 m-12 k+1)=64 \lambda
$$

Thus, $\mathrm{P}(\mathrm{k}+1)$ is divisible by 64 whenever $\mathrm{P}(\mathrm{k})$ is divisible by 64.
Hence, $\mathrm{P}(\mathrm{n})$ is divisible by 64. Ans.
Q. 4 (3)

By Induction, $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$.
Q. 5 (2)
$\mathrm{P}(\mathrm{n}): \cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots . . \cos 2^{\mathrm{n}-1} \alpha$
$\mathrm{P}(1): \cos \alpha=\frac{\sin 2 \alpha}{2 \sin \alpha}$
$\mathrm{P}(2): \cos \alpha \cos 2 \alpha=\frac{\sin 4 \alpha}{4 \sin \alpha}$

Let $\mathrm{P}(\mathrm{k}): \cos \alpha \cos 2 \alpha \cos 4 \alpha$ \qquad $\cos 2^{\mathrm{k}-1} \alpha=$ $\frac{\sin 2^{k} \alpha}{2^{\mathrm{k}} \sin \alpha}$
$\therefore \mathrm{P}(\mathrm{k}+1): \cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots \cos 2^{\mathrm{k}} \alpha=$
$\frac{\sin 2^{k+1} \alpha}{2^{k+1} \sin \alpha}$
L.H.S. of $P(k+1)$

$$
\begin{aligned}
& =\cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots \cos 2^{\mathrm{k}} \alpha \\
& =\frac{\sin 2^{\mathrm{k}} \alpha}{2^{\mathrm{k}} \sin \alpha} \times \cos 2^{\mathrm{k}} \alpha
\end{aligned}
$$

[Assuming $\mathrm{P}(\mathrm{k})$ to be true]

$$
\begin{aligned}
& =\frac{2 \sin 2^{k} \alpha \cos 2^{k} \alpha}{2^{k+1} \sin \alpha}=\frac{\sin 2^{k+1} \alpha}{2^{k+1} \sin \alpha} \\
& =\text { R.H.S of } P(k+1)
\end{aligned}
$$

Hence $P(n)$ holds true for all $n \in N$,. That is,
$\cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots . \cos 2^{n-1} \alpha=\frac{\sin 2^{n} \alpha}{2^{n} \sin \alpha}$. Ans.

For $\mathrm{n}=1,2^{3 \mathrm{n}}-7 \mathrm{n}-1=2^{3}-7-1=0$
For $\mathrm{n}=2,2^{3 \mathrm{n}}-7 \mathrm{n}-1=2^{6}-14-1=64-15=49$ which is divisible by 49. Ans.
Q. 7 (1)
$\mathrm{f}(\mathrm{n})=10^{\mathrm{n}}+3 \cdot 4^{\mathrm{n}+2}+\mathrm{k}$
$\mathrm{f}(1)=10+3 \cdot 4^{2}+\mathrm{k}=10+48+\mathrm{k}=58+\mathrm{k}$
$=9 \times 7-5+\mathrm{k}$
If $f(1)$ is to be divisible by 9 , then the least positive integral value of k has to be 5. Ans.
Q. 8 (2)
$\mathrm{f}(\mathrm{n})=10^{\mathrm{n}}+3 \cdot 4^{\mathrm{n}+2}+5$
$f(1)=10+48+5=63$, which is divisible by 7 and 3
$f(2)=100+3(256)+5=105+768=873$, which is divisible by 3 .
So, $f(n)=10^{\mathrm{n}}+3 \cdot 4^{\mathrm{n}+2}+5$ is divisible by 3 . Ans.
Q. 9 (1)

Let $\mathrm{P}(\mathrm{n}): \mathrm{x}^{\mathrm{n}}-1=\lambda(\mathrm{x}-\mathrm{k})$
Now $P(1): x-1=\lambda_{1}(x-k)$
Also,
$\mathrm{P}(2): \mathrm{x}^{2}-1=\lambda_{2}(\mathrm{x}-\mathrm{k})$
$\Rightarrow \mathrm{P}(2):(\mathrm{x}-1)(\mathrm{x}+1)=\lambda_{2}(\mathrm{x}-\mathrm{k})$
\therefore The least value of k for which the proposition $\mathrm{P}(\mathrm{n})$ is true is $\mathrm{k}=1$. Ans.
Q. 10 (2)

Let $\mathrm{P}(\mathrm{n}): \frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots .(\mathrm{n}$ terms $)$
$\Rightarrow \mathrm{P}(\mathrm{n}): \sum \frac{1^{3}+2^{3}+\ldots \ldots .+\mathrm{n}^{3}}{1+3+5+\ldots \ldots .+(2 \mathrm{n}-1)}$
$\Rightarrow \mathrm{P}(\mathrm{n}): \sum\left(\frac{\sum \mathrm{n}^{3}}{\mathrm{n}^{2}}\right)$
$\Rightarrow \mathrm{P}(\mathrm{n}): \sum\left[\frac{1}{4} \frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{\mathrm{n}^{2}}\right]$
$\Rightarrow \mathrm{P}(\mathrm{n}): \frac{1}{4} \sum\left(\mathrm{n}^{2}+2 \mathrm{n}+1\right)$
$\Rightarrow \mathrm{P}(\mathrm{n}): \frac{1}{4}\left[\sum \mathrm{n}^{2}+2 \sum \mathrm{n}+\sum(1)\right]$
$\Rightarrow \mathrm{P}(\mathrm{n}): \frac{1}{4}\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}+\frac{1}{3} \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)+\mathrm{n}\right]$
$\Rightarrow \mathrm{P}(\mathrm{n}): \frac{1}{24} \mathrm{n}[3(\mathrm{n}+1)+2(\mathrm{n}+1)(2 \mathrm{n}+1)+6]$
$\therefore \quad P(n): \frac{1}{24} n\left(2 n^{2}+9 n+13\right)$. Ans.
Q. 11 (2)

Let $\mathrm{P}(\mathrm{n})=\int_{0}^{\pi / 2} \frac{\sin ^{2} \mathrm{nx}}{\sin \mathrm{x}} \mathrm{dx}$
$\mathrm{P}(1)=\int_{0}^{\pi / 2} \frac{\sin ^{2} \mathrm{x}}{\sin \mathrm{x}} \mathrm{dx}=\int_{0}^{\pi / 2} \sin \mathrm{xdx}=[-\cos \mathrm{x}]_{0}^{\pi / 2}=1$
$P(2)=\int_{0}^{\pi / 2} \frac{\sin ^{2} 2 x}{\sin x} d x=\int_{0}^{\pi / 2} \frac{(2 \sin x \cos x)^{2}}{\sin x} d x$
$\Rightarrow P(2)=\int_{0}^{\pi / 2} 4 \sin x \cos ^{2} x d x$
$\Rightarrow \mathrm{P}(2)=4\left[\frac{-\cos ^{2} \mathrm{x}}{3}\right]_{0}^{\pi / 2}=\frac{4}{3}=1+\frac{1}{3}$
\therefore For any $\mathrm{n} \in \mathrm{N}$,

$$
\mathrm{P}(\mathrm{n})=\int_{0}^{\pi / 2} \frac{\sin ^{2} \mathrm{nx}}{\sin \mathrm{x}} \mathrm{dx}=1+\frac{1}{3}+\frac{1}{5}+\ldots . .+\frac{1}{2 \mathrm{n}-1} .
$$

JEE-MAIN

PREVIOUS YEAR'S

Q. $1 \quad$ (1)
$\mathrm{P}(\mathrm{n})=\mathrm{n}^{2}+41$
$\mathrm{P}(3)=9-3+41=47$
$P(5)=25-5+41=61$
Hence $\mathrm{P}(3)$ and $\mathrm{P}(5)$ are both prime

Statistics

EXERCISES

JEE-MAIN
 OBJECTIVE PROBLEMS
 Q. 1

Data	Mean
x	\bar{x}
$x=a p+b Q$	$\bar{x}=a \bar{p} \times b \bar{Q}$

Q. 2 (2)

x_{i}	w_{i}
$\mathrm{x}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}$	1^{2}
1	
1^{3}	2^{2}
2	
2^{3}	3^{2}
3	
3^{3}	\vdots
\vdots	
\vdots	n^{2}
n	

$$
\overline{\mathrm{x}}=\frac{\sum \text { xiwi }}{\sum \mathrm{wi}}=\frac{1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots+\mathrm{n}^{3}}{1^{2}+2^{2}+3^{2}+\ldots \ldots .+\mathrm{n}^{2}}
$$

$$
=\frac{\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]^{2}}{\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4} \times \frac{6}{\mathrm{n}(\mathrm{n}+1)}(2 \mathrm{n}+1)
$$

$$
=\frac{3 n(n+1)}{2(2 n+1)}
$$

Q. 3 (1)

$$
\begin{array}{r}
\sum\left(x_{i}-\bar{x}\right)=\sum x_{i}-n \bar{x} \\
=n \bar{x}-\bar{x} \cdot n=0
\end{array}
$$

Q. $4 \quad$ (3)

x_{i}	f_{i}
$\mathrm{x}_{\mathrm{i}} f_{\mathrm{i}}$	2
1	
2	2
2	
4	2
3	
6	
\vdots	
\vdots	2
n	
2 n	

$$
\begin{aligned}
& \frac{\sum \mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{2+4+6+\ldots \ldots .2 \mathrm{n}}{2+2+\ldots . .2} \\
& =\frac{2(1+2+3+\ldots \mathrm{n})}{2 \mathrm{n}}=\frac{2 \frac{(\mathrm{n}(\mathrm{n}+1))}{2}}{2 \mathrm{n}}=\frac{\mathrm{n}+1}{2}
\end{aligned}
$$

Q. $5 \quad$ (2)

$$
\mathrm{P}=\mathrm{P}_{1} \cdot \mathrm{P}_{2} \ldots \mathrm{P}_{n}
$$

Q. 6 (1)

$$
\begin{aligned}
& n \overline{\mathrm{x}}=\mathrm{n}_{1} \overline{\mathrm{x}}_{1}+\mathrm{n}_{2} \overline{\mathrm{x}}_{2} \\
& 12 \times 6=6 \times 8+6 \times \overline{\mathrm{x}}_{2} \\
& \overline{\mathrm{x}}_{2}=\frac{72-48}{6}=\frac{24}{6}=4
\end{aligned}
$$

Q. $7 \quad$ (4)

According to question x_{2} is replaced by t then
$\bar{x}=\frac{n \bar{x}-x_{2}+t}{n}$
Q. 8 (4)
Q. 9 (4)

x_{i}	$\left(\mathrm{x}_{(\mathrm{i}+1)}\right) \mathrm{x}_{\mathrm{i}}$
1	$(1+1)_{1}$
2	$(2+1)_{2}$
3	$(3+1)_{3}$
n	$(\mathrm{n}+1)_{\mathrm{n}}$

$\frac{\sum\left(\mathrm{x}_{\mathrm{i}}+1\right) \mathrm{x}_{\mathrm{i}}}{\mathrm{n}(\mathrm{n}+1)}=\frac{2+6+12+\ldots .(\mathrm{n}+1)^{\mathrm{n}}}{\mathrm{n}(\mathrm{n}+1)}$
Q. 10 (1)

Arrange is accending order
$\Rightarrow \mathrm{t}-\frac{7}{2}, \mathrm{t}-3, \mathrm{t}-\frac{5}{2}, \mathrm{t}-2, \mathrm{t}-\frac{1}{2}, \mathrm{t}+\frac{1}{2}, \mathrm{t}+4, \mathrm{t}+5$
$\Rightarrow \quad \frac{1}{2}\left[4^{\text {th }}+5^{\text {th }}\right.$ value $]$
$\Rightarrow \quad \frac{1}{2}\left[2 \mathrm{t}-\frac{5}{2}\right]$
$\Rightarrow \quad \mathrm{t}-\frac{5}{4}$
Q. 11 (4)

Mode $=3$ median -2 Mean
$121=3$ median -2×91

$$
\frac{121+182}{3}=\frac{303}{3}=101
$$

Q. 12 (1)
X_{i}
$\mathrm{x}_{\mathrm{i}} \pm \lambda$
$\lambda \mathrm{X}_{\mathrm{i}}$
S.D.(s)
s
$|\lambda| s$
$\frac{x_{i}}{\lambda} \frac{s}{|\lambda|}$
S.D of $\mathrm{px}+\mathrm{q}$ is $|\mathrm{p}| \mathrm{s}$
Q. 13 (2)

x_{i}	s
$\mathrm{x}_{\mathrm{i}} \pm \lambda$	s
$\|\lambda\| \mathrm{x}_{\mathrm{i}}$	$\|\lambda\| \mathrm{s}$
$\frac{\mathrm{x}_{\mathrm{i}}}{\|\lambda\|}$	$\frac{\mathrm{s}}{\|\lambda\|}$

S.D. of $\frac{a_{x}+b}{c}$ is $\left|\frac{a}{c}\right|$ s
Q. 14 (3)
$\sigma=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}{\Sigma \mathrm{f}_{\mathrm{i}}}-\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}}\right)^{2}$
Q. 15 (2)

$$
\begin{aligned}
& \mathrm{n} \overline{\mathrm{x}}=\mathrm{n}_{1} \overline{\mathrm{x}}_{1}+\mathrm{n}_{2} \overline{\mathrm{x}}_{2} \\
& =\mathrm{n}_{1} \frac{\mathrm{k}}{\mathrm{n}_{1}}+\mathrm{n}_{2} \\
& \mathrm{n}_{2}=\mathrm{n} \overline{\mathrm{x}}-\mathrm{K}
\end{aligned}
$$

Q. 16 (4)

x_{i}	$\overline{\mathrm{x}}$
$\frac{\mathrm{x}_{\mathrm{i}}}{\lambda}$	$\frac{\overline{\mathrm{x}}}{\lambda}$
λ	$\bar{\lambda}$

then new mean after each number is divided by 3 is

$$
\frac{\overline{\mathrm{x}}}{3}
$$

Q. 17 (3)

x_{i}	W_{i}
$x_{i} w i$	0
0	
0	1
1	

2
2^{2}
3 3
3^{2}
$4 \quad 4$
4^{2}

$\frac{\sum \mathrm{x}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}}{\sum \mathrm{w}_{\mathrm{i}}}=\frac{\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}}{\frac{\mathrm{n}(\mathrm{n}+1)}{2}}=\frac{2 \mathrm{n}+1}{3}$
Q. 18 (2)

$$
\begin{aligned}
& \text { A.M. }=\text { of } 1+2+4+8+16+\ldots \ldots .2^{n} \\
& =\frac{2^{n+1}-1}{n+1}
\end{aligned}
$$

Q. 19 (1)

In central tendency we measure mean, mode, median.
Q. 20 (1)

Most stable measure of central tendency is mean.
Q. 21 (3)

x_{i}	f_{i}
1	1
2	1
3	1
$:$	$:$
n	1

$\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{1+2+3+\ldots \mathrm{n}}{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2 \mathrm{n}}=\left(\frac{\mathrm{n}+1}{2}\right)$
Q. 22 (3)
$\mathrm{n} \overline{\mathrm{x}}=\mathrm{n}_{1} \overline{\mathrm{x}}_{1}+\mathrm{n}_{2} \overline{\mathrm{x}}_{2}$
$10 \overline{\mathrm{x}}=7 \times 10+3 \times 5$
$\overline{\mathrm{x}}=\frac{70+15}{10}=\frac{85}{10}=8.5$
Q. 23 (3)

A statistical measure which can not be determined graphically is harmonic mean it is a fandomental concept.
Q. 24 (1)

The measure which takes into account all the data item is mean it is a fandamental concept of account
Q. 25 (3)
$\overline{\mathrm{x}}=\frac{\Sigma \mathrm{x}}{\mathrm{n}} \Rightarrow \Sigma \mathrm{x}=\mathrm{n} \overline{\mathrm{x}}$
$=15 \times 154=2310$
$\Sigma \mathrm{x}=2310-145+175$
$=2340$
correct mean $=\frac{2340}{15}=156 \mathrm{c} . \mathrm{m}$.
Q. 26 (2)

For median arrange
scored in order
$0,5,11,19,21,27,30,36,42,50,52$
Median is $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ term

$$
\frac{11+1}{2}=6^{\text {th }} \text { term }=27
$$

Q. 27 (1)

Total $\Rightarrow \Sigma \mathrm{x}=\mathrm{n} \overline{\mathrm{x}}=10 \times 12.5=125$
First six $\Rightarrow \Sigma \mathrm{x}=\mathrm{n} \overline{\mathrm{x}}=6 \times 15=90$
Last five $\Rightarrow \Sigma \mathrm{x}=\mathrm{n} \overline{\mathrm{x}}=5 \times 10=50$
Last four $\quad 125-90=35$
$6^{\text {th }}$ no is
$50-35=15$
Q. 28 (1)

$$
\begin{aligned}
& \begin{array}{l}
\sum \mathrm{x}=\mathrm{n} \overline{\mathrm{x}}=100 \times 50=5000 \\
\text { S.D. }= \\
\begin{aligned}
& 4=\sqrt{\sigma^{2}} \\
&=\sqrt{\frac{1}{\sigma^{2}} \sum \mathrm{x}_{\mathrm{i}}^{2}-\overline{\mathrm{x}}^{2}} \\
&=\sqrt{\frac{\sum \mathrm{x}^{2}}{100}-(50)^{2}} \\
& 16=\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}}{100}-2500 \\
&(16+2500) \cdot 100=\Sigma \mathrm{x}_{\mathrm{i}}^{2} \\
& 251600=\Sigma \mathrm{x}_{\mathrm{i}}^{2}
\end{aligned}
\end{array}
\end{aligned}
$$

Q. 29 (1)
S.D. $=\sqrt{\frac{1}{\mathrm{~N}} \Sigma \mathrm{x}_{\mathrm{i}}^{2}-\overline{\mathrm{x}}^{2}}$

$$
\begin{aligned}
& \overline{\mathrm{x}}=\frac{\sum \mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{{ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{an}} \mathrm{C}_{1}+{ }^{\mathrm{a}^{2} \mathrm{n}} \mathrm{C}_{2}+{ }^{\mathrm{a}^{\mathrm{n}} \mathrm{n}} \mathrm{C}_{\mathrm{n}}}{{ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}+\ldots .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}} \\
& \frac{\Sigma f_{i} x_{i}^{2}}{\mathrm{~N}}=\frac{{ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{a^{2}{ }^{n}} C_{1}+{ }^{a^{4}{ }^{n}} C_{2}+{ }^{a^{6} n} C_{3}+\ldots . . a^{2 n n} C_{n}}{{ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots .+{ }^{n} C_{n}}
\end{aligned}
$$

Q. 30 (1)
$A M=\frac{a+b}{2}=10$
G.M. $=\sqrt{\mathrm{ab}}=8$
$H \cdot M=\frac{2 a b}{a+b}=?$
H.M. $=\frac{(\mathrm{G} . \mathrm{M} .)^{2}}{\text { A.M. }}$

$$
=\frac{64}{10}=6.4
$$

And number are 16, 4
Q. 31 (3)
$\mathrm{n}_{1}=100$
$\mathrm{n}_{2}=150$
$\overline{\mathrm{x}}_{1}=50$
$\overline{\mathrm{x}}_{2}=110$
$\sigma_{1}^{2}=5$
$\sigma_{2}^{2}=6$
$\mathrm{n} \overline{\mathrm{x}}=\mathrm{n}_{1} \overline{\mathrm{x}}_{1}+\mathrm{n}_{2} \overline{\mathrm{x}}_{2}$
$=100 \times 50+150 \times 40$
$=5000+6000$
$\overline{\mathrm{x}}=\frac{11000}{250}=44$
$\sigma^{2}=\mathrm{n}_{1} \frac{\left(\sigma_{1}^{2}+\mathrm{d}_{1}^{2}\right)+\mathrm{n}_{2}\left(\sigma_{2}^{2}+\mathrm{d}_{2}^{2}\right)}{\mathrm{n}_{1}+\mathrm{n}_{2}}$
$\mathrm{d}_{1}=50-44=6$
$\mathrm{d}_{2}=40-44=-4$
$\sigma^{2}=100 \frac{(25+36)+150(36+16)}{250}$
$=\frac{6100+7800}{250}=55.6$
$\sigma=\sqrt{55.6}=7.46$
Q. 32 (1)
$C V_{1}=58 \%$
$\mathrm{CV}_{2}=69 \%$
$\sigma_{1}=21.2$
$\sigma_{1}=15.6$
$\mathrm{CV}=\frac{\sigma}{\mathrm{x}} \times 100$
$\mathrm{CV}_{1}=\frac{\sigma_{1}}{\mathrm{x}_{1}} \times 100 \Rightarrow \overline{\mathrm{x}}_{1}=\frac{\sigma_{1} \times 100}{\mathrm{CV}_{1}}=\frac{21.2 \times 100}{58}=$
$\frac{2120}{58}=36.55$
$\mathrm{CV}_{2}=\frac{\sigma_{2}}{\mathrm{x}_{2}} \times 100 \Rightarrow \overline{\mathrm{x}}_{2}=\frac{\sigma_{2} \times 100}{\mathrm{CV}_{2}}=\frac{15.6 \times 100}{69}=$ 22.60
Q. 33 (3)
$\mathrm{n}=10$
$\overline{\mathrm{x}}=12$
$\Sigma \mathrm{x}^{2}=1530$
$\sigma^{2}=\frac{1}{\mathrm{n}} \Sigma\left(\mathrm{x}_{1}^{2}-\overline{\mathrm{x}}^{2}\right)$
$\sigma^{2}=\frac{1}{10}[1530-10(144)]=\frac{90}{10}=9$
$\sigma=3$
$\overline{\mathrm{x}}=12$
C.O.V. $=\frac{\sigma}{\mathrm{x}} \times 100=\frac{3}{12} \times 100=25 \%$
Q. 34 (1)
$\mathrm{AM}=\frac{{ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}+\ldots .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}}{\mathrm{n}+1}$

$$
=\frac{2^{\mathrm{n}}}{\mathrm{n}+1}
$$

Q. 35 (3)

$$
\begin{array}{l|l}
\overline{\mathrm{x}}_{1}=50 & \sigma_{1}^{2}=15 \\
\overline{\mathrm{x}}_{2}=48 & \sigma_{2}^{2}=12 \\
\overline{\mathrm{x}}_{3}=12 & \sigma_{3}^{2}=2
\end{array}
$$

Most consistant is kapil
Q. 36 (2)
$\overline{\mathrm{x}}=\frac{\sum \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=\frac{\sum\left(\mathrm{x}_{\mathrm{i}}+2 \mathrm{i}\right)}{\mathrm{n}}=\frac{\sum \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}+\frac{2 \sum \mathrm{i}}{\mathrm{n}}=\overline{\mathrm{x}}+\frac{2 \mathrm{n}(\mathrm{n}+1)}{2 \mathrm{n}}$

$$
=\overline{\mathrm{x}}+(\mathrm{n}+1)
$$

Q. 37 (2)
$\sigma^{2}=\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}}{\mathrm{n}}-\left(\frac{\sum \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}\right)^{2}$
$=\frac{1^{2}+2^{2}+3^{2}+\ldots \ldots+\mathrm{n}^{2}}{\mathrm{n}}-\left(\frac{1+2+3+\ldots .+\mathrm{n}}{\mathrm{n}}\right)^{2}$
$=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6 \mathrm{n}}-\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2 \mathrm{n}}\right)^{2}$
$=\frac{(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}-\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4 \mathrm{n}^{2}}$
$=\frac{\mathrm{n}^{2}-1}{12}$
Q. 38 (1)
$\overline{\mathrm{x}}=\frac{\Sigma \mathrm{x}}{\mathrm{n}} \Rightarrow \mathrm{M}=\frac{\Sigma \mathrm{x}}{\mathrm{n}} \Rightarrow \Sigma \mathrm{x}=\mathrm{nM}$
sum of $n-4$ observations is a
mean of remaing 4 observation is $\frac{\mathrm{nM}-\mathrm{a}}{4}$
Q. 39 (3)

Mean of series is
$\bar{x}=\frac{a+(a+d)+(a+2 d)+\ldots \ldots+(a+2 n d)}{(2 n+1)}$
$\bar{x}=a+n d$
$\therefore \quad \sum_{\mathrm{i}=0}^{2 \mathrm{n}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right| \Rightarrow \frac{2 \mathrm{~d}(\mathrm{n})(\mathrm{n}+1)}{2}$
$\Rightarrow \mathrm{n}(\mathrm{n}+1) \mathrm{d}$
$\therefore \quad$ Mean deviation $=\frac{n(n+1) d}{(2 n+1)}$
Q. 40 (3)
$\overline{\mathrm{x}}=\frac{\sum \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}$
$=\frac{\mathrm{x}_{1}+1+\mathrm{x}_{2}+2+\ldots}{\mathrm{n}}$
$=\frac{\mathrm{x}_{1}+\mathrm{x}_{1}+\ldots . .+\mathrm{x}_{\mathrm{n}}}{\mathrm{n}}+\frac{1+2+\ldots . . \mathrm{n}}{\mathrm{n}}=\overline{\mathrm{x}}+\frac{\mathrm{n}(\mathrm{n}+1)}{2 \mathrm{n}}$
$=\overline{\mathrm{x}}+\left(\frac{\mathrm{n}+1}{2}\right)$
Q. 41 (4)

Quartile deviation $=\frac{\theta_{3}-\theta_{1}}{2}=\frac{40-20}{2}=10$
Q. 42 (1)
X_{i}
$\mathrm{x}_{\mathrm{i}} \pm \lambda$
S.D.
$\lambda \mathrm{x}_{\mathrm{i}}$
$|\lambda| s$
$\frac{x_{i}}{\lambda} \frac{s}{|\lambda|}$
then S.D. of $a x+b$ is $|a| s$
where s is staindered deviation.
Q. 43 (1)
r = range
S.D. $=S^{2}=\frac{1}{n-1} \sum_{i=0}^{n}\left(x_{i}-\bar{x}\right)^{2}$ then $S \leq r \sqrt{\frac{n}{n-1}}$
Q. 44 (3)

If $\mathrm{x}_{1}, \mathrm{x}_{2}$ \qquad x_{n} are n observations with frequencies $\mathrm{f}_{1}, \mathrm{f}_{2}$ \qquad f_{n}, then mean deviation from mean (m) is given by

Mean deviation $=\frac{1}{\mathrm{~N}} \Sigma \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|$
Q. 45 (4)

x_{i}	σ
x	4
$\frac{\mathrm{x}}{4}$	$\frac{4}{\|4\|}=1$

KVPY

PREVIOUS YEAR'S

Q. 1
Q. 2
(A)
Q. 3
(B)
Q. 4 (C)

Let $\mathrm{x}_{1}<\mathrm{x}_{2}<\mathrm{x}_{3} \ldots \ldots \mathrm{x}_{11}$
median of $x_{1}, x_{2} \ldots . x_{10}$ is $\frac{x_{5}+x_{6}}{2}$
Now the new set of number are $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{5}$
$\frac{x_{5}+x_{6}}{2}, x_{6}, \ldots . . x_{10}$
Hence median is $\frac{x_{5}+x_{6}}{2}<x_{6} \Rightarrow$ median decreases

$$
\begin{aligned}
& \text { JEE MAIN } \\
& \text { PREVIOUS YEAR } \\
& \text { Q.1 (11) } \\
& \sigma^{2}=\frac{\sum \mathrm{x}^{2}}{\mathrm{n}}=\left(\frac{\sum \mathrm{x}}{\mathrm{n}}\right)^{2} \\
& \sigma^{2}=\frac{\left(9+\mathrm{k}^{2}\right)}{10}-\left(\frac{9+\mathrm{k}^{2}}{10}\right)^{2}<10 \\
& \left(90+\mathrm{k}^{2}\right) 10-\left(81+\mathrm{k}^{2}+8 \mathrm{k}\right)<1000 \\
& 90+10 \mathrm{k}^{2}-\mathrm{k}^{2}-18 \mathrm{k}-81<1000 \\
& 9 \mathrm{k}^{2}-18 \mathrm{k}+9<1000 \\
& (\mathrm{k}-1)^{2}<\frac{100}{9} \Rightarrow \mathrm{k}-1<\frac{10 \sqrt{10}}{3} \\
& \mathrm{k}<\frac{10 \sqrt{10}}{3}+1
\end{aligned}
$$

Maximum integral value of $k=11$
Q. 2 (4)

$$
\begin{align*}
& \sum x_{i}-18 \alpha=36 \\
& \sum x_{i}=18(\alpha+2) \\
& \sum x_{\mathrm{i}}^{2}+18 \beta^{2}-2 \beta \sum x_{\mathrm{i}}=90 \\
& \sum \mathrm{x}_{\mathrm{i}}^{2}+18 \beta^{2}-2 \beta \times 18(\alpha+2)=90 \\
& \Sigma \mathrm{x}_{\mathrm{i}}^{2}=90-18 \beta^{2}+36 \beta(\alpha+2) \quad \ldots .(\mathrm{ii}) \tag{ii}\\
& \sigma^{2}=1 \Rightarrow \frac{1}{18} \sum \mathrm{x}_{\mathrm{i}}^{2}-\left(\frac{\sum \mathrm{x}_{\mathrm{i}}}{18}\right)^{2}=1 \\
& \Rightarrow \frac{1}{18}\left(90-18 \beta^{2}+36 \alpha \beta+72 \beta\right)-\left(\frac{18(\alpha+2)}{18}\right)^{2}=1 \\
& \Rightarrow 90-18 \beta^{2}+36 \alpha \beta+72 \beta-18(\alpha+2)^{2}=18 \\
& \Rightarrow 5-\beta^{2}+2 \alpha \beta+4 \beta-(\alpha+2)^{2}=1 \\
& \Rightarrow 5-\beta^{2}+2 \alpha \beta+4 \beta-\alpha^{2}-4-4 \alpha=1 \\
& -\alpha^{2}-\beta^{2}+2 \alpha \beta+4 \beta-4 \alpha=0 \\
& -(\alpha-\beta)^{2}-4(\alpha-\beta)=0 \\
& -(\alpha-\beta)(\alpha-\beta+4)=0 \\
& \Rightarrow \alpha-\beta=-4 \\
& |\beta-\alpha|=4
\end{align*} \quad(\alpha \neq \beta) \quad 10
$$

(4)

For a, b, c
mean $=\frac{a+b+c}{3}(=\bar{x})$
$\mathrm{b}=\mathrm{a}+\mathrm{c}$
$\Rightarrow \quad \overline{\mathrm{x}}=\frac{2 \mathrm{~b}}{3}$
S.D. $(\mathrm{a}+2, \mathrm{~b}+2, \mathrm{c}+2)=$ S.D. $(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{d}$

$$
\begin{aligned}
& \Rightarrow \quad d^{2}=\frac{a^{2}+b^{2}+c^{2}}{3}-(\bar{x})^{2} \\
& \Rightarrow \quad d^{2}=\frac{a^{2}+b^{2}+c^{2}}{3}-\frac{4 b^{2}}{9} \\
& \Rightarrow \quad 9 d^{2}=3\left(a^{2}+b^{2}+c^{2}\right) ? 4 b^{2} \\
& \Rightarrow \quad b^{2}=3\left(a^{2}+c^{2}\right) ? 9 d^{2}
\end{aligned}
$$

Q. 4 (5)

$\sigma^{2}=\frac{\mathrm{n}_{1} \sigma_{1}^{2}+\mathrm{n}_{2} \sigma_{2}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}+\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)}\left(\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}\right)^{2}$
$\mathrm{n}_{1}=10, \mathrm{n}_{2}=\mathrm{n}, \quad \sigma_{1}^{2}=2, \quad \sigma_{2}^{2}=1$
$\overline{\mathrm{x}}_{1}=2, \overline{\mathrm{x}}_{2}=3, \sigma^{2}=\frac{17}{9}$
$\frac{17}{9}=\frac{10 \times 2+n}{n+10}+\frac{10 n}{(n+10)^{2}}(3-2)^{2}$

$$
\begin{aligned}
& \Rightarrow \frac{17}{9}=\frac{(\mathrm{n}+20)(\mathrm{n}+10)+10 \mathrm{n}}{(\mathrm{n}+10)^{2}} \\
& \Rightarrow 17 \mathrm{n}^{2}+1700+340 \mathrm{n}=90 \mathrm{n}+9\left(\mathrm{n}^{2}+30 \mathrm{n}+200\right) \\
& \Rightarrow \quad 8 n^{2}-20 \mathrm{n}-100=0 \\
& 2 n^{2}-5 n-25=0 \\
& \Rightarrow \quad(2 \mathrm{n}+5)(\mathrm{n}-5)=0 \Rightarrow \mathrm{n}=\frac{-5}{2}, 5 \\
& \text { (Rejected) } \\
& \text { Hence } \mathrm{n}=5 \\
& \frac{\sum \mathrm{x}_{\mathrm{i}}}{25}=40 \& \frac{\sum \mathrm{x}_{\mathrm{i}}-60+\mathrm{N}}{25}=39
\end{aligned}
$$

Q. 5

Let age of newly appointed teacher is N
$\Rightarrow 1000-60+\mathrm{N}=975$
$\Rightarrow \mathrm{N}=35$ years
Q. 6
(1)

Let observations are denoted by x_{i} for $1 \leq i<2 \mathrm{n}$
$\bar{x}=\frac{\sum x_{i}}{2 n}=\frac{(a+a+\ldots+a)-(a+a+\ldots+a)}{2 n}$
and $\sigma_{\mathrm{x}}^{2}=\frac{\sum \mathrm{x}_{i}^{2}}{2 \mathrm{n}}-(\overline{\mathrm{x}})^{2}=\frac{\mathrm{a}^{2}+\mathrm{a}^{2}+\ldots+\mathrm{a}^{2}}{2 \mathrm{n}}-0=\mathrm{a}^{2}$
$\Rightarrow \sigma_{\mathrm{x}}=\mathrm{a}$
Now, adding a constant b then $\bar{y}=\bar{x}+b=5$
$\Rightarrow \mathrm{b}=5$
and $\sigma_{y}=\sigma_{x}$ (No change in S.D.) $\Rightarrow \mathrm{a}=20$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2} \stackrel{x}{=} 425$
Q. 7
(4)
Q. 8 (164)
Q. 9 (3)
Q. 10 (4)
Q. 11 (3)
Q. 12 (1)
Q. 13 (4)
Q. 14 (3)
Q. 15 [398]
Q. 16 (12)
Q. 17 (4)

Given :
Mean $=(\bar{x})=\frac{\sum x_{i}}{20}=10$
or $\sum \mathrm{x}_{\mathrm{i}}=200$ (incorrect)
or $200-25+35=210=\sum \mathrm{X}_{\mathrm{i}}$ (Correct)
Now correct $\overline{\mathrm{X}}=\frac{210}{20}=10.5$
again given S.D. $=2.5(\sigma)$
$\sigma^{2}=\frac{\sum \mathrm{x}_{\mathrm{i}}{ }^{2}}{20}-(10)^{2}=(2.5)^{2}$
or $\sum \mathrm{x}_{\mathrm{i}}^{2}=2125$ (incorrect)
or $\sum \mathrm{x}_{\mathrm{i}}^{2}=2125-25^{2}+35^{2}$
$=2725$ (correct)
\therefore correct $\sigma^{2}=\frac{2725}{20}-(10.5)^{2}$
$\underline{\underline{\sigma}}^{2}=26$
or $\sigma=26$
$\therefore \underline{\alpha}=10.5, \beta=26$
$\begin{array}{ll}\text { Q. } 18 & (40) \\ \text { Q. } 19 & {[100]}\end{array}$

[^0]: (2)

 (2)
 (1)
 (4)

